
Web Programming Tools and Frameworks

Table of contents:

Table of contents

Introduction

JavaScript Review

Handling Asynchronous Code

Web Server Introduction

UI Toolkits

Advanced Routing & Middleware

Web API Overview

Template Engines

Working with Forms

Relational Database (Postgres)

NoSQL Database (MongoDB)

Managing State Information

Security Considerations

Resources

Welcome to Web Programming Tools And Frameworks

Developer Tools & Core Technologies

Visual Studio Code

Integrated Terminal

Smart Editing

File & Folder Based

Version Control

Modern Web Browser

Browser Developer Toolbar

Core Technologies

JavaScript (ECMAScript)

Node.js

Git

PostgreSQL

MongoDB

Hello World

Node.js Globals

console

process

__dirname

__filename

setTimeout()

setInterval()

URL

Built-In Modules / 'require()'

fs

path

readline

Object Oriented JavaScript

Object Literal Notation

The "class" keyword

Private Methods / Properties

Getters / Setters

Inheritance

Modern Syntax

Functions

Arrow Functions

Destructuring Object Parameters

Arrays

Iterating

Destructuring Elements

Spread Syntax

Strings

Template Literals

Errors

try / catch

Throwing Errors

Example Code

Callbacks

Defining Functions with Callbacks

Adding Parameters

Promises & Async / Await

Callback Review

Promises

Resolve & Then

Adding Data

Reject & Catch

Putting it Together

Async & Await

Putting it Together (again)

Using Await

Example Code

HTTP Protocol Overview

HTTP Requests

Start line

Headers

Body

HTTP Responses

Status line

Headers

Body

Modules & Node Package Manager

Modules

Writing Modules

NPM – Node Package Manager

Globally installing packages

package.json explained

Simple Web Server using Express.js

Project Structure

Express.js

Simple 'GET' Routes

Returning .html Files

CSS & Images

Public Hosting (Vercel)

Example Code

What is a UI Toolkit / Framework?

Popular Frameworks

Bootstrap

Materialize

Bulma

Foundation

Introduction to Sass

Getting Started

Working with SCSS

Tailwind CSS & daisyUI

Setting up Tailwind CSS

Configure Tailwind CSS

"Build" main.css

Introducing daisyUI

Installing

Theming

Components

Example Code

Application, Request & Response Objects

The Application object

app.all()

HTTP Verb Methods

app.locals

app.listen()

app.set()

app.use()

The Request object

req.body

req.cookies

req.params

req.query

req.get()

The Response object

res.cookie()

res.set()

res.end()

res.redirect()

res.send()

res.sendFile()

res.status()

Middleware

Getting Started

Updating "req"

Restricting Route Access

404 Errors

Types of Middleware

Application-Level Middleware

Router-Level Middleware

Error-Handling Middleware

Built-In Middleware

Third-Party Middleware

Example Code

JavaScript Object Notation (JSON)

Converting JSON to an Object

Converting an Object to JSON

Caveats When Using JSON

Object Instances

Functions (Methods)

AJAX Review

AJAX Introduction: The Fetch API

AJAX: The Fetch API (Compressed)

Handling Responses with an "Error" Status

API Introduction & Implementation

Route Configuration

AJAX Testing (View)

Adding Data (JSON)

Example Code

Introduction

Returning HTML & Data

Template Engines

EJS (Embedded JavaScript Templates)

Getting Started

EJS Syntax

Delimiters (Tags)

Includes / "Partials"

Logic

if / else

Iterating over Collections

"Nesting" Logic

Layouts

Example Code

HTML Form Elements Review

Form

Input

Textarea

Select

Checkbox

Radio Button

Label

Hidden

Submit

Processing URL Encoded Form Data

Body Parsing Middleware

Writing The Route Handler

Special Consideration ("checkbox")

Processing Multipart Form Data

Processing the Data with Middleware

Default (Simple) configuration

Writing The Route Handler

Additional Configuration (diskStorage)

Ephemeral / Read-Only File Systems

Example Code

Introduction to Postgres

PostgreSQL (Postgres)

pgAdmin

Sequelize ORM with Postgres

Getting Started

Models (Tables) Introduction

Defining Models

Model Relationships / Associations

Operations (CRUD) Reference

Create

Read

Update

Delete

Example Code

Introduction to MongoDB

NoSQL vs Traditional SQL

Setting up a MongoDB Atlas account

Obtaining your Connection String

Mongoose ODM with MongoDB

Mongoose Schemas

Creating a Schema

Unique Index

Adding Data

Reading Data

.exec()

Arrays and Recursive Schemas

Multiple Connections

Operations (CRUD) Reference

Create

Read

Selecting specific fields

Update

Delete

Example Code

Key Terminology

Cookies

Sessions

Authentication vs Authorization

Status codes

Introduction to "Client Sessions"

The "client-sessions" Library

Middleware

Testing

Practical Application

Routes

Templates

Middleware

Route Updates (Logic)

Example Code

HTTPS Introduction

Digital Certificates

Viewing Certificates

Self Signed Certificates

Creating Self Signed Certificates (Development)

Using SSL Certificates

Warning in Firefox

Warning in Chrome

Password Encryption

Bcrypt

Encrypting Passwords

Validating Encrypted Passwords

Secure HTTP Headers

Introducing Helmet.js

Example Code

Getting Started with Vercel

Required Software

Configuring your App for Vercel

Adding a "vercel.json" file.

Setting the "views" Application Setting

Updating your "express.static()" Middleware

Explicitly Requiring the "pg" Module

Committing Your Code

Create a GitHub Repository

Connect the Local Git Repository to GitHub

Connect the GitHub Repository to Vercel

Make Changes and Push to GitHub

Alternative (Render)

On this page

Table of contents

Introduction

Welcome

Developer Tools & Core Technologies

Hello World

JavaScript Review

Object Oriented JavaScript

Modern Syntax

Example Code

Handling Asynchronous Code

Callbacks

Promises & Async / Await

Example Code

Web Server Introduction

HTTP Protocol Overview

Modules & Node Package Manager

Simple Web Server using Express.js

Example Code

UI Toolkits

http://localhost:3000/Introduction/welcome
http://localhost:3000/Introduction/developer-tools-core-technologies
http://localhost:3000/Introduction/hello-world
http://localhost:3000/JavaScript-Review/object-oriented-javascript
http://localhost:3000/Javascript-Review/modern-syntax
http://localhost:3000/Javascript-Review/example-code
http://localhost:3000/Handling-Asynchronous-Code/callbacks
http://localhost:3000/Handling-Asynchronous-Code/promises-async-await
http://localhost:3000/Handling-Asynchronous-Code/example-code
http://localhost:3000/Web-Server-Introduction/http-protocol-overview
http://localhost:3000/Web-Server-Introduction/modules-node-package-manager
http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs
http://localhost:3000/Web-Server-Introduction/example-code

What is a UI Toolkit / Framework?

Tailwind CSS & daisyUI

Example Code

Advanced Routing & Middleware

Application, Request & Response Objects

Middleware

Example Code

Web API Overview

JavaScript Object Notation (JSON)

AJAX Review

API Introduction & Implementation

Example Code

Template Engines

Introduction

EJS (Embedded JavaScript Templates)

Example Code

Working with Forms

HTML Form Elements Review

Processing URL Encoded Form Data

Processing Multipart Form Data

Example Code

Relational Database (Postgres)

http://localhost:3000/UI-Toolkits/what-is-a-ui-toolkit-framework
http://localhost:3000/UI-Toolkits/tailwind-css-daisyui
http://localhost:3000/UI-Toolkits/example-code
http://localhost:3000/Advanced-Routing-Middleware/application-request-response-objects
http://localhost:3000/Advanced-Routing-Middleware/middleware
http://localhost:3000/Advanced-Routing-Middleware/example-code
http://localhost:3000/Web-API-Overview/javascript-object-notation-JSON
http://localhost:3000/Web-API-Overview/ajax-review
http://localhost:3000/Web-API-Overview/api-introduction-and-implementation
http://localhost:3000/Web-API-Overview/example-code
http://localhost:3000/Template-Engines/introduction
http://localhost:3000/Template-Engines/ejs-embedded-javaScript-templates
http://localhost:3000/Template-Engines/example-code
http://localhost:3000/Working-With-Forms/html-form-elements-review
http://localhost:3000/Working-With-Forms/processing-url-encoded-form-data
http://localhost:3000/Working-With-Forms/processing-multipart-form-data
http://localhost:3000/Working-With-Forms/example-code

Introduction to Postgres

Sequelize ORM with Postgres

Operations (CRUD) Reference

Example Code

NoSQL Database (MongoDB)

Introduction to MongoDB

Mongoose ODM with MongoDB

Operations (CRUD) Reference

Example Code

Managing State Information

Key Terminology

Introduction to "Client Sessions"

Example Code

Security Considerations

HTTPS Introduction

Password Encryption

Secure HTTP Headers

Example Code

Resources

Vercel Guide

http://localhost:3000/Relational-Database-Postgres/introduction-to-postgres
http://localhost:3000/Relational-Database-Postgres/sequelize-orm-with-postgres
http://localhost:3000/Relational-Database-Postgres/operations-crud-reference
http://localhost:3000/Relational-Database-Postgres/example-code
http://localhost:3000/NoSQL-Database-MongoDB/introduction-to-mongodb
http://localhost:3000/NoSQL-Database-MongoDB/mongoose-odm-with-mongodb
http://localhost:3000/NoSQL-Database-MongoDB/operations-crud-reference
http://localhost:3000/NoSQL-Database-MongoDB/example-code
http://localhost:3000/Managing-State-Information/key-terminology
http://localhost:3000/Managing-State-Information/introduction-to-client-sessions
http://localhost:3000/Managing-State-Information/example-code
http://localhost:3000/Security-Considerations/https-introduction
http://localhost:3000/Security-Considerations/password-encryption
http://localhost:3000/Security-Considerations/secure-http-headers
http://localhost:3000/Security-Considerations/example-code
http://localhost:3000/Resources/vercel-guide

Welcome to Web Programming

Tools And Frameworks

Welcome to Web Programming Tools and Frameworks. In this course we will be studying a wide range of

technologies that are used to create dynamic content on the web. These include modern tools and libraries /

frameworks that enable the programmer to quickly and efficiently create a functioning web-based application

capable of responding to requests for content, reacting predictably to errors and storing / retrieving user and

application data.

We will be looking at what exactly a web application is and how we can use a familiar programming

language (JavaScript / ECMAScript) to create and maintain one. Additionally, we will be studying how web

browsers send data to and from a web server and how we can ensure that our applications are scalable,

secure and robust. We will also study methods of storing and retrieving data from a data store (SQL &

NoSQL Databases) and how to manage state (ie: “logged-in”) information about users.

On this page

Developer Tools & Core

Technologies

Throughout this course, we will be working almost exclusively in the following environments:

Visual Studio Code

“Visual Studio Code is an open-source (free) streamlined code editor with support for development

operations like debugging, task running and version control. It aims to provide just the tools a developer

needs for a quick code-build-debug cycle and leaves more complex workflows to fuller featured IDEs”. Visual

Studio Code also runs on Mac OS X, Linux and Windows operating systems, which will provide the class

with a single unified environment to work in regardless of a student’s choice of laptop or home computer.

Some of the noteworthy features of Visual Studio Code Include:

Integrated Terminal

“In Visual Studio Code, you can open an integrated terminal, initially starting at the root of your workspace.

This can be very convenient as you don’t have to switch windows or alter the state of an existing terminal to

perform a quick command line task”.

To open the terminal:

Use the keyboard shortcut Ctrl + `

Use the View | Toggle Integrated Terminal menu command.

Smart Editing

VS Code comes with a built-in JavaScript language service so you get JavaScript code intelligence out-of-

the-box. Language services provide the code understanding necessary for features like:

http://code.visualstudio.com/

IntelliSense: (suggestions)

smart code navigation (Go to Definition, Find All References, Rename Symbol)

File & Folder Based

Since VS Code is file and folder based – you can get started immediately by simply opening a file or folder in

VS Code.

“On top of this, VS Code can read and take advantage of a variety of project files defined by different

frameworks and platforms. For example, if the folder you opened in VS Code contains one or more

package.json (which we will be making extensive use of during the semester), project.json, tsconfig.json, or

.NET Core Visual Studio solution and project files, VS Code will read these files and use them to provide

additional functionality, such as rich IntelliSense in the editor”.

Version Control

Visual Studio Code has integrated Git support for some of the most common commands, making it easy to

verify and commit code changes (see "Git" below).

Modern Web Browser

A modern web browser such as Google Chrome or Mozilla Firefox will be used regularly throughout this

course. Microsoft Edge will work as well, as it supports a similar set of development tools, however due to it’s

lack of plugins / addons and cross-platform support it’s not as highly recommended. All screenshots and

development examples used throughout this course have been taken in Google Chrome.

Browser Developer Toolbar

Before starting this course, students should have at least a basic understanding of the Developer Tools built

into a modern web browser. Typically, pressing the F12 Key (Windows) will open the bar, however there are

alternate ways of opening it. For Google chrome:

Open the Chrome menu at the top-right of your browser window, then select Tools > Developer Tools.

Right-click on any page element and select Inspect.

https://git-scm.com/
https://www.google.com/chrome/browser
https://www.mozilla.org/en-US/firefox/new/

This will bring up the Chrome “Developer Toolbar”, as seen below :

We will be working with many of these panels throughout the semester. A quick list of their functionality (from

left to right, starting at the top left corner) is as follows:

Element Inspector: Select an element in the page to inspect it; this will cause the

Developer Tools (Devtools) to switch to the “Elements” panel and highlight the

rendered source code (HTML) responsible for displaying the item. This will also

cause the “Styles” panel (on the right) to highlight all current CSS applied to the

element

Device Toolbar Toggle: Toggles the “device toolbar” on and off. This allows the

developer to select a device and manually enter the pixel dimensions of the screen

and scale of the page. This is useful for ensuring that the page looks correct on a

variety of devices

Elements Panel: Shows a view of the current page’s Document Object Model

(DOM) tree as HTML. Selecting a given node (element) will highlight it in the page

and show it’s applied CSS in the “Styles” panel. Developers can also modify this

element and corresponding CSS (“Styles” panel) live and see the results directly in

the browser. Important Note: The HTML shown in this panel isn’t necessarily the

source code of the page, as it will show elements and attributes that have been

dynamically added after the page is loaded. Changes to the HTML/CSS/JavaScript

in this mode will not save to the source file.

Sources Panel: shows a list of all items included in the page (ie: all images, CSS,

JavaScript, etc) and their corresponding locations of origin. Developers can click on

an item to show it’s contents in the middle (preview) panel. If the selected item is a

JavaScript file, developers can (in the “debugger” panel) set breakpoints and watch

variables to help identify and debug a misbehaving piece of JavaScript code.

Console Panel: shows a JavaScript console pane. JavaScript calls to

“console.log()” will show the resultant text in this window. Additionally, all JavaScript

errors will show up in this location in red. Developers can also write small

JavaScript code snippets to be executed immediately within the context of the

page.

Network Panel: is used to get additional insights into requested and downloaded

resources. Developers can view a log that tracks all resources loaded including

their corresponding status code, type, time (latency), size of the resource and the

initiator of the request

Performance Panel: enables a tool that allows developers to record and analyze

all the activity in their applications as they run. It’s the best place to start

investigating perceived performance issues. This is done by recording a timeline of

every event that occurs after a page loads and analyzing the corresponding FPS,

CPU, and network requests.

Memory Panel: provides more detailed debugging information than the timeline by

enabling developers to record detailed CPU/Memory profiles such as a “Heap

Snapshot”, “Allocation instrumentation on timeline" and “Allocation sampling".

Application Panel: allows developers to inspect and manage client-side storage,

caches, and resources. This includes: key-value pairs stored in “Local Storage”,

access to IndexedDB Data (a JavaScript-based object-oriented database used to

store data locally), a “Web SQL” explorer (depreciated in favour of IndexedDB), as

well as access to stored cookies and cache data. This is very useful in verifying

that your application is storing data correctly on the client side.

Security Panel: gives an overview of a page from a security standpoint including:

Certificate verification (indicating whether the site has proven its identity with a TLS

certificate), Transport Layer Security (TLS) connection (Note: TLS is often referred

to by the name of it’s predecessor, SSL) and Subresource security (indicating

whether the site loads insecure HTTP subresources – ie: “mixed content”).

Error Icon: displays the number of errors present in the “Console Pane”. To review

the errors, simply switch over to the Console pane and locate the items highlighted

in red.

Customize Icon: controls where the Developer Toolbar should be placed relative

to the browser, as well as a collection of all related settings and preferences for the

tool set.

Close Icon: closes the Developer Toolbar.

Core Technologies

Additionally, we will cover a number of topics surrounding the following technologies (in no particular order):

JavaScript (ECMAScript)

A huge focus of this course will be on JavaScript. In fact – JavaScript will be the only official programming

language that we will be studying in this course. While we will be interacting with HTML5 and CSS3, neither

is considered a “programming language” in the same way that C, C++ or JavaScript is. HTML5 and CSS3

are instead considered markup languages and style sheet languages respectfully – that is, they describe

presentation, whereas programming languages describe function. Regardless, we will be focusing

exclusively on JavaScript and how a number of very sophisticated tools and frameworks can help us create

efficient and functional web applications.

ECMAScript

Back in 1996 the JavaScript language specification was taken to Ecma (European Computer Manufacturers

Association) International to develop a formal standardized specification, which other browser vendors and

companies could implement and expand upon. This standardized JavaScript was dubbed “ECMAScript” and

specific vendor versions of the specification were known as “dialects”, the most popular of which being

“JavaScript”. When we refer to “JavaScript” we’re really referring to a dialect of ECMAScript that has been

implemented in the engine / runtime environment that is running our JavaScript formatted code. For

example, this includes JavaScript engines like SpiderMonkey in Firefox and v8 in Chrome.

In 2015, ECMAScript 6 was released and many important features were introduced, such as:

Arrow Functions

Class Definitions

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

Block Scoped Variables

Promises

Binary & Octal literals

Modules

and many more…

Since then, development of ECMAScript has continued and new versions are released yearly. For a

comprehensive list of which features are supported in specific browsers, environments and runtimes, see:

ECMAScript Compatibility Table

Node.js

At it’s core, Node.js is an open-source, cross-platform JavaScript runtime environment built on Chrome’s V8

JavaScript engine. It is typically used for developing server-side and networking applications and has

exploded as the go-to application framework for many real-time web applications. This is largely due to it’s

event-driven, non-blocking I/O model which ensures that the main thread of execution is not kept waiting for

slow I/O operations (ie: stopping and waiting for a database query to complete). Some major companies

using it include Paypal, eBay, GoDaddy, Microsoft, Shutterstock, Uber, Wikia just to name a few.

Node.js also has an expansive package ecosystem accessible via it’s Node Package Manager (NPM) utility.

We will leverage this by experimenting with a number of popular, open-source modules including:

Express.js (http://expressjs.com)

EJS (https://ejs.co)

Tailwind (https://tailwindcss.com)

Multer (https://github.com/expressjs/multer)

Sequelize (https://sequelize.org)

Mongoose (https://mongoosejs.com)

Git

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://www.w3schools.com/js/js_es6.asp
https://webreference.com/javascript/basics/versions
https://compat-table.github.io/compat-table/es2016plus/
https://nodejs.dev/en/
https://www.npmjs.com/package/express
http://expressjs.com/
https://www.npmjs.com/package/ejs
https://ejs.co/
https://www.npmjs.com/package/tailwindcss
https://tailwindcss.com/
https://www.npmjs.com/package/multer
https://github.com/expressjs/multer
https://www.npmjs.com/package/sequelize
https://sequelize.org/
https://www.npmjs.com/package/mongoose
https://mongoosejs.com/

We will be using Git: a command-line tool which serves as a version control system used for tracking

changes to your source code and making it available for collaboration with other developers (by leveraging

online tools such as Github or GitLab). Additionally, there are many online services that connect to your

published code to 3rd party cloud platforms such as Render or Netlify which can build your code and host

your web application. For this class, we will be using Vercel - please see the Vercel Guide for more

information.

There is a ton of information online on how to get started using Git / GitHub, such as:

An Intro to Git and GitHub for Beginners (Tutorial)

Pro Git (eBook)

Git and GitHub learning resources

PostgreSQL

From the PostgreSQL site, postgresql.org:

“PostgreSQL (also known as “Postgres”) is a powerful, open source object-relational database system.

It has more than 15 years of active development and a proven architecture that has earned it a strong

reputation for reliability, data integrity, and correctness. It runs on all major operating systems, including

Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, macOS, Solaris, Tru64), and Windows. It is fully ACID

compliant, has full support for foreign keys, joins, views, triggers, and stored procedures (in multiple

languages). It includes most SQL:2008 data types, including INTEGER, NUMERIC, BOOLEAN, CHAR,

VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also supports storage of binary large objects,

including pictures, sounds, or video. It has native programming interfaces for C/C++, Java, .Net, Perl,

Python, Ruby, Tcl, ODBC, among others, and exceptional documentation.

MongoDB

MongoDB is another open-source database that we will be exploring in this course. However, unlike MySQL

MongoDB is classified as a “NoSQL” database and stores its data in JSON like format rather than in tables

with fixed columns. The term NoSQL comes from “Not only SQL” and is intended to mean that it is a type of

database system that can store data in non traditional tabular and relational format. It is because of this that

NoSQL is quickly becoming a popular alternative to traditional Relational Databases (RDBMS).

https://github.com/
https://about.gitlab.com/
https://render.com/
https://www.netlify.com/
https://vercel.com/
http://localhost:3000/Resources/vercel-guide
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://git-scm.com/book/en/v2
https://docs.github.com/en/get-started/quickstart/git-and-github-learning-resources
https://www.postgresql.org/
https://en.wikipedia.org/wiki/ACID
https://www.postgresql.org/docs/manuals/

We will be exploring how we can leverage NoSQL (MongoDB) to make data management simple and

intuitive as well as how it compares to traditional RDBMS systems.

On this page

Hello World

To get a sense of how to write code using the tools for this course and to ensure that your development

environment is set up correctly, let's start with a simple "Hello World".

1. If you haven’t already, be sure to download and install the current release of Node.js. If you’re not sure

whether or not you have Node.js installed, open the Command Prompt and type node -v. If Node.js

has been installed, this will output the version.

2. Make sure you have Visual Studio Code installed. This is an open-source, cross-platform development

environment provided by Microsoft. While it is true that you can write your code in any text editor, Visual

Studio Code works very nicely alongside Node.js and all examples going forward will assume that you

are using Visual Studio Code. You can download it here

3. On your Local computer, navigate to your desktop and create a folder called Ex1

4. Open Visual Studio Code and select File -> Open Folder. Choose your newly created “Ex1” Folder

and click “Select Folder”

5. You should see an “Explorer” pane open on the left side with two items: “Open Editors” and “Ex1”. Click

to expand “Ex1” and locate the “New File” button (). Click this and type “hello.js”.

6. You should now see your newly created “Hello.js” file in the editor. Enter the following line of code:

and click File -> Save (Ctrl + S)

7. Open the Integrated Terminal by selecting View -> Integrated Terminal (Ctrl + `) and type:

Hello World! This is the most basic example in Node.js – notice how we didn’t need to open a web browser,

scratchpad, devtools, etc? It’s also important to note that the command “node hello.js” can be executed in

any command prompt as long as the active working directory is set to wherever your hello.js file is located

console.log('Hello World!');

node hello.js

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://nodejs.dev/en/download/
https://code.visualstudio.com/download

(Ex1 in this case). The Integrated Terminal is just a quick, easy way to get a command prompt running in the

correct location without leaving the development environment.

Node.js Globals

Regarding the code that we wrote, it’s very simple; however we have made an important assumption: that we

have access to a global “console” object. In Node.js we have access to a number of global objects /

variables in addition to the built-in objects that are built into the JavaScript language. Some of the Node.js

Globals that we will be using include:

console

The console object provides a simple debugging console that is similar to the JavaScript console mechanism

provided by web browsers.

Some of the key methods that we will be using are:

console.log()

console.time() / console.timeEnd()

console.dir()

process

The process object is a global instance of the EventEmitter class that provides information about, and control

over, the current Node.js process. It exposes many properties, methods and events related to controlling

system interactions.

Some of the key elements that we will be using are:

Methods: process.on(), process.abort(), process.kill(), process.exit()

Properties: process.stdin, process.stdout, process.stderr, process.pid, process.env

Events: beforeExit, Exit, uncaughtException

__dirname

__dirname is used to obtain name of the directory that the currently executing script resides in.

For example: if our .js file is located in /Users/pcrawford/ex1.js:

https://nodejs.org/docs/latest/api/globals.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://nodejs.org/docs/latest/api/console.html
https://nodejs.org/docs/latest/api/console.html#consolelogdata-args
https://nodejs.org/docs/latest/api/console.html#consoletimelabel
https://nodejs.org/docs/latest/api/console.html#consoletimeendlabel
https://nodejs.org/docs/latest/api/console.html#consoledirobj-options
https://nodejs.org/docs/latest/api/process.html
https://nodejs.org/docs/latest/api/events.html#class-eventemitter
https://nodejs.org/docs/latest/api/process.html#processabort
https://nodejs.org/docs/latest/api/process.html#processkillpid-signal
https://nodejs.org/docs/latest/api/process.html#processexitcode
https://nodejs.org/docs/latest/api/process.html#processstdin
https://nodejs.org/docs/latest/api/process.html#processstdout
https://nodejs.org/docs/latest/api/process.html#processstderr
https://nodejs.org/docs/latest/api/process.html#processpid
https://nodejs.org/docs/latest/api/process.html#processenv
https://nodejs.org/docs/latest/api/process.html#event-beforeexit
https://nodejs.org/docs/latest/api/process.html#event-exit
https://nodejs.org/docs/latest/api/process.html#event-uncaughtexception
https://nodejs.org/docs/latest/api/modules.html#__dirname

__filename

__filename is used to obtain file containing the code being executed as well as the directory. This is the

resolved absolute path of this code file.

For example: if our .js file is located in /Users/pcrawford/ex1.js:

setTimeout()

The setTimeout() function will execute a piece of code (function) after a certain delay. It accepts 3

parameters:

callback Function: The function to call when the timer elapses.

delay number: The number of milliseconds to wait before calling the callback

[, …arg] Optional arguments to pass when the callback is called.

For example:

setInterval()

The setInterval() function will execute a piece of code (function) after a certain delay and continue to call it

repeatedly. It accepts 3 parameters (below) and returns a timeout object

callback Function: The function to call when the timer elapses.

delay number: The number of milliseconds to wait before calling the callback

[, …arg] Optional arguments to pass when the callback is called.

console.log(__dirname);
// outputs /Users/pcrawford

console.log(__filename);
// outputs /Users/pcrawford/ex1.js

// outputs "Hello after 1 second" to the console
setTimeout(function () {
 console.log('Hello after 1 second');
}, 1000);

https://nodejs.org/docs/latest/api/modules.html#__filename
https://nodejs.org/docs/latest/api/timers.html#settimeoutcallback-delay-args
https://nodejs.org/docs/latest/api/timers.html#setintervalcallback-delay-args
https://nodejs.org/docs/latest/api/timers.html#timeout

Note: Unless you want the interval to continue forever, you need to call clearInterval() with the timeout object

as a parameter to halt the interval

For example:

URL

The URL class is used to create a new URL object by parsing the full URL string, ie:

Once we have a new URL object, we can access / modify aspects of it via their associated properties:

let count = 1; // global counter
let maxCount = 5; // global maximum

let myCountInterval = setInterval(function () {
 console.log('Hello after ' + count++ + ' second(s)');
 checkMaximum();
}, 1000);

let checkMaximum = function () {
 if (count > maxCount) {
 clearInterval(myCountInterval);
 }
};

let myURL = new URL('https://myProductInventory.com/products?
sort=asc&onSale=true');

console.log(myURL);

/*
URL {
 href: 'https://myproductinventory.com/products?sort=asc&onSale=true',
 origin: 'https://myproductinventory.com',
 protocol: 'https:',
 username: '',
 password: '',
 host: 'myproductinventory.com',
 hostname: 'myproductinventory.com',
 port: '',
 pathname: '/products',

https://nodejs.org/docs/latest/api/timers.html#clearintervaltimeout
https://nodejs.org/docs/latest/api/url.html

To access the parsed query parameters (ie the "search" property), we can use a "for...of" loop to iterate over

key-value pairs the "searchParams": property:

Built-In Modules / 'require()'

You may have noticed that some of the examples from the documentation include a mandatory 'require()'

statement. For example, if we try to execute this simplified 'EventEmitter' sample from the documentation:

we run into an error: ReferenceError: EventEmitter is not defined . As you will have guessed, this

is because our running script does not know about the "EventEmitter" class, as it is not global. To remedy

this, we can include the required class by "requiring" it, with the following syntax:

 search: '?sort=asc&onSale=true',
 searchParams: URLSearchParams { 'sort' => 'asc', 'onSale' => 'true' },
 hash: ''
*/

for (const [key, value] of myURL.searchParams) {
 console.log('key: ' + key + ' value: ' + value);
}

/*
key: sort value: asc
key: onSale value: true
*/

const myEmitter = new EventEmitter();

myEmitter.on('event', function () {
 console.log('an event occurred!');
});

myEmitter.emit('event');

const EventEmitter = require('events');

const myEmitter = new EventEmitter();

myEmitter.on('event', function () {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://nodejs.org/docs/latest/api/modules.html#requireid

By using the global 'require' function, we have loaded a code "module" which contains code and logic that

we can use in our own solutions. We will discuss modules in detail in the "Web Server Introduction" section

(see: "Modules & Node Package Manager"), however for now we should be aware of the following "Built-In"

modules:

fs

The 'fs' module is used to work directly with the file system (ie: read / write files, list the contents of a

directory, etc). For example, if we had a CSV file with names, (ie: names.csv):

We could read the contents of the file and convert the list into an array:

Similarly, if we had a directory of images, ie: "img", we could list the files using:

 console.log('an event occurred!');
});

myEmitter.emit('event');

Jacob,Alexandra,Jessie,Ranya,Felix

const fs = require('fs');

fs.readFile('names.csv', function (err, fileData) {
 if (err) console.log(err);
 else {
 namesArray = fileData.toString().split(',');
 console.log(namesArray);
 }
});

const fs = require('fs');

fs.readdir('img', function (err, filesArray) {
 if (err) console.log(err);
 else {
 console.log(filesArray);
 }
});

https://nodejs.org/docs/latest/api/esm.html#require
http://localhost:3000/Web-Server-Introduction/modules-node-package-manager
https://nodejs.org/docs/latest/api/fs.html

path

The 'path' module provides utilities for working with file and directory paths. This will be useful when working

with reading template files or writing uploaded files. For example, it can easily be used to safely concatenate

two directories / paths together:

readline

The 'readline' module provides a way to read data from a "Readable stream" (such as process.stdin) one line

at a time. For example, we can use this to prompt the user to enter data in the console using the following

code:

const path = require('path');

console.log('Absolute path to about.html');

console.log(path.join(__dirname, '/about.html')); // with leading slash
console.log(path.join(__dirname, '//about.html')); // with multiple leading
slashes
console.log(path.join(__dirname, 'about.html')); // without leading slash
console.log(path.join(__dirname, '\about.html')); // with incorrect leading
slash

const readline = require('readline');

const rl = readline.createInterface(process.stdin, process.stdout);

rl.question('First Name: ', function (fName) {
 rl.question('Last Name: ', function (lName) {
 console.log('Hello: ' + fName + ' ' + lName);
 rl.close();
 });
});

https://nodejs.org/docs/latest/api/path.html
https://nodejs.org/docs/latest/api/readline.html

On this page

Object Oriented JavaScript

Like many other modern languages, Javascript is "Object Oriented":

"Object-oriented programming is about modeling a system as a collection of objects, where each object

represents some particular aspect of the system. Objects contain both functions (or methods) and data.

An object provides a public interface to other code that wants to use it but maintains its own private,

internal state; other parts of the system don't have to care about what is going on inside the object."

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming

Object Literal Notation

The most simple and straight-forward way to create an object in JavaScript is to use "Object Literal Notation"

(sometimes referred to as "object initializer" notation). The syntax for creating an object using this notation is

as follows:

So, if we wanted to create an object with the following properties:

name (string)

age (number)

occupation (string)

and methods...

setName ("setter" to set a new value for the "name" property)

setAge ("setter" to set a new value for the "age" property)

getName ("getter" to get the current value of the "name" property)

let obj = {
 property_1: value_1,
 property_2: value_2,
 // ...,
 'property n': value_n,
}; // properties can also be defined as a string`

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming

getAge ("getter" to get the current value of the "age" property)

using "Object Literal" notation, we would write the code:

and access the data (properties) and functions (methods) using the following code, ie:

We must use the “this” keyword whenever we refer to one of the properties of the object inside one of it’s

methods. This is due to the fact that when a method is executed, "age" (for example) might already exist in

the global scope, or within the scope of the function as a local variable. To be absolutely sure that we are

referring to the correct "age" property of the current object, we must refer to the "execution context" - ie: the

object that is actually making a call to this method. We know the object has an "age" property, so in order to

be more specific about which age variable that we want to change, we leverage the keyword this. "this" will

refer to the "execution context", ie: the object that called the function! So, "this.age" can be read literally as

"the age property on this object", which is exactly the property that we wish to edit.

let architect = {
 name: 'Joe',
 age: 34,
 occupation: 'Architect',

 setName: function (newName) {
 this.name = newName;
 },

 setAge: function (newAge) {
 this.age = newAge;
 },

 getName: function () {
 return this.name;
 },

 getAge: function () {
 return this.age;
 },
};

console.log(architect.name); // "Joe"
// or
console.log(architect.getName()); // "Joe"

However, while "this" allows us to be specific with which properties that we refer to in our methods, it can

lead to some confusing scenarios. For example, what if we added a new "outputNameDelay()" method to our

architect object that writes the architect's name to the console after 1 second (1000 milliseconds):

Everything looks correct and we have made proper use of the "this", however because the setTimeout

function is not executed as a method of our architect object, we end up with "undefined" as output to the

console. There are a number of fixes for this issue (most noteworthy is the "arrow function" syntax -

discussed further on) - one common way is to introduce a local variable (often named "that") into the current

scope that holds a reference to "this"

Now, we aren't using the "this" keyword from within the setTimeout() function, but rather "that" from our

outputNameDelay function and everything works as it should! (ie, "that" points to architect, since it was the

architect that invoked the outputNameDelay method).

The "class" keyword

If we wish to create multiple objects of the same "type" (ie: that have the same properties and methods, but

with different values), we can leverage the "class" and "new" keywords, ie:

// ...
outputNameDelay: function(){
 setTimeout(function(){
 console.log(this.name);
 },1000);
}
// ...
architect.outputNameDelay(); // outputs undefined

// ...
outputNameDelay: function(){
 let that = this;
 setTimeout(function(){
 console.log(that.name);
 },1000);
}
// ...
architect.outputNameDelay(); // outputs "Joe"

Here, we specify the properties (with default values), a "constructor" function to take initialization parameters,

as well as specify all of the methods within the "class" block.

class Architect {
 name;
 age;
 occupation = 'architect'; // default value of "architect" for occupation

 constructor(setName = '', setAge = 0) { // handle missing parameters with ''
and 0
 this.name = setName;
 this.age = setAge;
 }

 setName(newName) {
 this.name = newName;
 }

 setAge(newAge) {
 this.age = newAge;
 }

 getName() {
 return this.name;
 }

 getAge() {
 return this.age;
 }
}

// define new "architect objects using the "new" keyword with the "architect"
class

let architect1 = new Architect('Joe', 34);
let architect2 = new Architect('Mary', 49);

// samples of accessing properties and methods on both objects

console.log(architect1.name); // "Joe"

console.log(architect1.getName()); // "Joe"
console.log(architect2.getName()); // "Mary"

Private Methods / Properties

Notice how we can access the "name" property of the new Architect objects, directly (ie: without using the

"getName()" function)? This is because by default, all properties and methods are "public". If we wish to

mark properties as "private" (preventing the property from being accessed directly), we must add a "#"

character to the beginning of the property or method name. For example:

If we now try to access the "#name" property directly on an object created with this class, we get the

following error:

class Architect {
 #name;
 #age;
 #occupation = 'architect'; // default value of "architect" for occupation

 constructor(setName = '', setAge = 0) {
 this.#name = setName;
 this.#age = setAge;
 }

 #privateMethod() {
 console.log("I'm a private method");
 }

 setName(newName) {
 this.#name = newName;
 }

 setAge(newAge) {
 this.#age = newAge;
 }

 getName() {
 return this.#name;
 }

 getAge() {
 return this.#age;
 }
}

let architect1 = new Architect('Joe', 34);
console.log(architect1.#name); // SyntaxError

Getters / Setters

If we do wish to provide direct access to the "name" and "age" properties however, we can use "setters" and

"getters". This way, we have more control over how the properties are manipulated and retrieved, internally to

the class. For example, if we want controlled access to the "name" and "age" properties, we could use the

following syntax:

SyntaxError: Private field '#name' must be declared in an enclosing class

class Architect {
 #name;
 #age;
 #occupation = 'architect'; // default value of "architect" for occupation

 constructor(setName = '', setAge = 0) {
 this.#name = setName;
 this.#age = setAge;
 }

 #privateMethod() {
 console.log("I'm a private method");
 }

 set name(newName) {
 this.#name = newName;
 }

 set age(newAge) {
 this.#age = newAge;
 }

 get name() {
 return this.#name;
 }

 get age() {
 return this.#age;
 }
}

let architect1 = new Architect('Joe', 34);
console.log(architect1.name); // Joe

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get

Inheritance

A core principal of Object-Oriented Programming is "inheritance":

"a mechanism where you can to derive a class from another class for a hierarchy of classes that share

a set of attributes and methods."

https://stackify.com/oop-concept-inheritance

In JavaScript, this is implemented via the "Prototype Chain":

"When it comes to inheritance, JavaScript only has one construct: objects. Each object has a private

property which holds a link to another object called its prototype. That prototype object has a prototype

of its own, and so on until an object is reached with null as its prototype. By definition, null has no

prototype, and acts as the final link in this prototype chain."

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain.

This is why we can access properties like "length" on a string, even though it is a primitive - it exists on the

prototype of the built-in String Object. When we access the "length" property, a string primitive is

automatically wrapped in a "String" object via a process known as "auto-boxing" and we gain access to the

property on the prototype.

To see this in action, let's modify the String prototype after we create a new string primitive. Once the string

primitive is "auto-boxed" with the String object, we should have access to whatever we add on the prototype:

Now that we know a little about how inheritance is implemented in JavaScript, you might be asking: "how

does this work in our class definition?" and "do we have to modify the prototype of new objects directly?"

Fortunately, JavaScript has added the "extend" keyword so that we do not have to. For example, if our

"architect" class inherits from a more generic "Job" class, we could write the code:

let name = 'Thomas Anderson';

String.prototype.sayHello = function () {
 console.log('Hello from String!');
};

name.sayHello(); // Hello from String!

https://stackify.com/oop-concept-inheritance
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Glossary/Primitive

for the "Job" class and add the new functionality for the "Architect" class using the following code:

class Job {
 #name;
 #age;

 constructor(setName = '', setAge = 0) {
 this.#name = setName;
 this.#age = setAge;
 }

 set name(newName) {
 this.#name = newName;
 }

 set age(newAge) {
 this.#age = newAge;
 }

 get name() {
 return this.#name;
 }

 get age() {
 return this.#age;
 }
}

class Architect extends Job {
 #occupation = 'architect';

 constructor(setName = '', setAge = 0) {
 super(setName, setAge); // invoke the "parent" constructor
 }

 #privateMethod() {
 console.log("I'm a private method");
 }
}

let architect1 = new Architect('Joe', 34);
console.log(architect1.name);

To verify that Job is indeed part of the "prototype chain" of the new architect1 object, we can use the familiar

"prototype" test from above, ie:

Job.prototype.sayHello = function () {
 console.log('Hello from Job!');
};

architect1.sayHello(); // Hello from Job!

On this page

Modern Syntax

JavaScript is constantly evolving. Since 2015 with the release of ECMAScript 6 (ES6), there has been a new

release every year. This steady release schedule means that it is extremely important to be familiar with

some of the concepts released in the last few years as more and more examples, tutorials and online

documentation make use of these features. It can be easy to fall behind and find some of the new syntax

unusual or confusing.

To help navigate these notes and other related documentation, we have outlined some of the more

important, ubiquitous features released since ES6:

Functions

In JavaScript, functions are typically defined using either a declaration or expression and may contain either

a fixed or variable list of parameters, which may or may not have default values.

However, as JavaScript evolved, additional options and features for working with functions have as well. The

following sections outline some of the features that we will use in these notes:

Arrow Functions

ES6 (ECMAScript 2015) introduced a compact version of function expressions known as "Arrow functions",

for example:

let adder = function (num1, num2) {
 return num1 + num2;
};

// is the same as:

let adderArrow = (num1, num2) => {
 return num1 + num2;
};

https://webreference.com/javascript/basics/versions/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions#function_declarations
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions#function_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions#arrow_functions

Essentially, we have removed the "function" keyword and replaced it with an arrow following the parameter

list. While this is indeed shorter, we can compress the function expression even further as arrow functions

use an "implicit return". This means that if the curly brackets ("{" and "}") are omitted from the arrow function,

the inner expression is returned:

Additionally, if there is only a single parameter, the brackets surrounding the parameters may also be

omitted, ie:

NOTE: if there are 0 parameters to the function, empty round brackets must be used, ie:

Lexical "this"

Arrow functions are great for creating simplified code that is easier to read (sometimes referred to as "syntax

sugar"), however there is another very useful and slightly misleading feature that we have yet to discuss: the

notion of a "lexical 'this'". Recall that when we added the "outputNameDelay" method to the architect object,

we had to overcome the issue with "this" pointing at the incorrect object by introducing a new local variable,

"that":

While this does solve the problem, wouldn't it be better if we didn't have to always create a new local variable

to sit in for "this"? Fortunately, arrow functions actually use a "lexical this" instead of their own value for "this",

so functions defined using the arrow notation use the "this" value of their parent scope.

With this in mind, we can re-write the above function using an arrow function to achieve the same result

without having to introduce any new variables to handle the "this" issue. Additionally, because it's such a

let adderArrowShort = (num1, num2) => num1 + num2;

let squared = num => num * num;

let getHello = () => 'Hello World';

outputNameDelay: function(){
 let that = this;
 setTimeout(function(){
 console.log(that.name);
 },1000);
}

simple function, we can transform it into a single line:

This is a typical use of arrow functions, ie: to simplify a scenario in which we need to declare a function in

place, often as a parameter to other functions ("callbacks"). We don't have to concern ourselves with how

"this" will behave in the new context and the added "syntax sugar" makes the operation much simpler to read

and shorter to code.

Destructuring Object Parameters

Another common feature introduced in ES6 is the ability to perform a "destructuring assignment" for objects.

For example, if we have the following code that defines a "product" object:

and we wish to extract the "price" and "id" values into separate variables, we would typically use the

following syntax:

However, this can be shortened to the following, using a "destructuring assignment":

This type of syntax is commonly used when passing object properties as parameters to functions. For

example, instead of the following code:

outputNameDelay: function(){
 setTimeout(() => console.log(this.name), 1000);
}

let product = {
 id: '145be9',
 price: 1.35,
 onSale: false,
};

let price = product.price;
let id = product.id;

let { price, id } = product;

function outputProduct(productObj) {
 console.log('Product', productObj.id, productObj.price);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

we could use the more concise:

Arrays

Iterating

An Array in JavaScript is technically an "indexed collection", ie: "an ordered list of values that you refer to

with a name and an index". Because of this, the simplest ways to iterate over the collection are with the

common for loop and do...while / while loops. However, there are other ways to iterate over an array,

including:

for...of loop

The for...of statement "executes a loop that operates on a sequence of values sourced from an iterable

object. Iterable objects include instances of built-ins such as Array, String, TypedArray, Map, Set, NodeList

(and other DOM collections), as well as the arguments object, generators produced by generator functions,

and user-defined iterables."

forEach() Method

The forEach() method of the Array object can be used to execute a function once per element of the array,

with the element (and optionally, the index) as the parameter(s), for example:

}

function outputProduct({ id, price }) {
 console.log('Product', id, price);
}

let sample = ['A', 'B', 'C'];

for (const element of sample) {
 console.log(element);
}

let sample = ['A', 'B', 'C'];

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/do...while
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/while
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

NOTE: There are many other methods similar to "forEach" that serve to:

Filter the array

Find elements in the array

Reduce the array to a single value

Test if the array contains some element that meets a specific criteria

Test if every element of the array meets a specific criteria

and so on...

Destructuring Elements

As we have seen above, ES6 introduced the "destructuring assignment". We used this feature to make the

syntax for extracting properties from objects more concise and to clarify function parameters. Fortunately,

this feature is also available for arrays using a similar process:

Here, we assign the variables a & b at the same time by "destructuring" the array. This syntax is popular in

libraries such as React (for example, when using the common "useState" hook"), so it's important that we

become familiar with it.

Spread Syntax

You have likely seen the "..." syntax before in JavaScript. A common use for it is in the form of "rest"

parameters, which allow for the creation of functions that take on an unknown number of parameters:

sample.forEach((element, index) => console.log(element + ' at index: ' +
index));

let sample = ['A', 'B', 'C'];

// let a = sample[0];
// let b = sample[1];

let [a, b] = sample;

function sum(...numbers) {
 let total = 0;

 for (const num of numbers)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/some
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://react.dev/
https://react.dev/reference/react/useState
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

However, "..." can also be used outside of function parameters as a placeholder for values in an array (or

properties in an object). This is commonly referred to as "spread" syntax. For example, if we wished to

merge two arrays to create a new array (without using the built-in "concat" function), one option is to use the

following code:

Here, we must loop through each array and add each element in turn to a new array. However, using the

"spread" syntax, we can instead use the following code:

By using the "..." syntax, we're essentially saying "the elements of the array".

NOTE: This can be used for objects as well, ie:

 total += num;

 return total;
}

console.log(sum(1, 2, 3, 4, 5, 6)); // 21

let sample1 = ['A', 'B', 'C'];
let sample2 = ['D', 'E', 'F'];

let sample3 = [];
sample1.forEach((element) => sample3.push(element));
sample2.forEach((element) => sample3.push(element));

console.log(sample3); // ['A', 'B', 'C', 'D', 'E', 'F']

let sample1 = ['A', 'B', 'C'];
let sample2 = ['D', 'E', 'F'];

let sample3 = [...sample1, ...sample2];

console.log(sample3); // ['A', 'B', 'C', 'D', 'E', 'F']

let product = {
 id: '145be9',
 price: 1.35,
 onSale: false,
};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/concat

It is important to note however, that while we are using the "..." to create a new copy of arrays / objects, it is

only a "shallow" copy (ie: it will not copy "nested" elements and properties, leaving a reference to the

original array / object).

Strings

Template Literals

A common way to place text and data together in a single string in JavaScript is to use the "+" operator. For

example:

However, wouldn't it be simpler if we could have a single string with placeholders for data, rather than

multiple strings placed next to data, concatenated using the "+" operator?

Fortunately, ES6 has introduced "Template literals" sometimes called "Template strings", which use the (`)

character to define the string and the "${expression}" syntax to insert an expression into the string to be

evaluated.

Using this, we can re-write our above example to remove the "+" operator and instead use the more concise

(and easier to read):

Additionally, since the "${}" syntax within the template literal allows to evaluate an expression, we can also

execute functions and other logic within the string definition, such as:

let productWithStore = { ...product, store: '53' };

console.log(productWithStore); // { id: '145be9', price: 1.35, onSale: false,
store: '53' }

let x = 5, y = 6;
console.log(x + " + " + y + " = " + (x + y)); // 5 + 6 = 11

let x = 5, y = 6;
console.log(`${x} + ${y} = ${x + y}`); // 5 + 6 = 11

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

NOTE: We also have the added bonus of creating multi-line strings, ie:

Errors

One of the most important aspects of writing any program is elegantly handling errors. It is important to

never let your program suddenly crash or enter an unknown state due to an unanticipated error. JavaScript

features numerous mechanisms to handle certain types of logical errors; for example the global isNaN()

function is a way to elegantly respond to a situation in which a number was expected, but not returned:

Similarly, we can use the global isFinite() function to handle a situation where division by zero has occurred:

let shapes = ['circle', 'square', 'triangle'];
console.log(`My favourite shapes are:${shapes.map((shape, index) => ` ${index +
1}: ${shape}`)}`);

// My favourite shapes are: 1: circle, 2: square, 3: triangle

let myString = `Hello
World`;

console.log(myString);
// Hello
// World

let x = 'twenty';
let y = parseInt(x);

if (isNaN(y)) {
 console.log('x cannot be converted to a number');
} else {
 console.log(`success! the numeric value of x is: ${y}`);
}

let x = 30, y = 0;
let z = x / y;

if (isFinite(z)) {
 console.log(`success! ${x} / ${y} = ${z}`);

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/isFinite

try / catch

While the above functions are extremely useful for handling logical errors, they are not sophisticated enough

to handle a situation that would completely break your code and cause the program to fail. For example,

consider the following example that uses our new "const" keyword:

Here, we are trying to change the value of a constant: PI. If we try to run this short program in Node.js, the

program will crash before we get a chance to see the string "Haha! PI is now: 99", or even "Haha! PI is now:

3.14159". There is no elegant recovery and we do not get to exit the program gracefully. This can be a huge

problem if, for example we were working with a live connection to a service and an unexpected error

occurred. Our program would crash and we would not be able to respond to the error by alerting the user

and properly closing the connection. Fortunately, before our program crashes in such a way, Node.js will

"throw" an "Error" object that we can intercept using the "try...catch" statement:

} else {
 console.log(`${x} is not divisible by ${y}`);
}

const PI = 3.14159;

console.log('trying to change PI!');

PI = 99;

console.log(`Haha! PI is now: ${PI}`);

const PI = 3.14159;

console.log('trying to change PI!');

try {
 PI = 99;
} catch (ex) {
 console.log('uh oh, an error occurred!');
}

console.log(`Alas, it cannot be done, PI remains: ${PI}`);

https://nodejs.org/docs/latest/api/errors.html#class-error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch

If we execute the above code in Node.js we will find that our program doesn't crash and that our string: "Alas,

it cannot be done, PI remains: 3.14159" gets correctly logged to the terminal! Additionally, we can execute a

specific block of code right when the error is encountered; in this case we output "uh oh, an error occurred!".

This is not very useful to help us debug the error, but it better than having the program crash and at least we

know that an error did indeed occur. If we wish to obtain additional information about the error, we can make

use of some of the properties / methods of the Error object that was thrown as an exception and caught in

our "catch" block. For example, we can alter the code to use the "message" property of the caught exception

(ex) to display a more helpful error:

By utilizing properties such as Error.message & Error.stack, we can gain further insight to exactly what went

wrong and we can either refactor our code to remedy the error, or acknowledge that the error will happen

and handle it gracefully.

Lastly, if we have some code that we would like to execute regardless of whether or not the code in our "try"

block is successful, we can use a "finally" block:

const PI = 3.14159;

console.log('trying to change PI!');

try {
 PI = 99;
} catch (ex) {
 console.log(`uh oh, an error occurred: ${ex.message}`);
 // outputs: uh oh, an error occurred: Assignment to constant variable.
}

console.log(`Alas, it cannot be done, PI remains: ${PI}`);

const PI = 3.14159;

console.log('trying to change PI!');

try {
 PI = 99;
} catch (ex) {
 console.log(`uh oh, an error occurred: ${ex.message}`);
 // outputs: uh oh, an error occurred: Assignment to constant variable.
} finally {
 console.log('always execute code in this block');
}

https://nodejs.org/docs/latest/api/errors.html#class-error
https://nodejs.org/docs/latest/api/errors.html#errormessage
https://nodejs.org/docs/latest/api/errors.html#errorstack

Throwing Errors

Now that we know how to correctly handle errors that have been thrown by the Node.js runtime environment

or by other code / modules included in our solutions, why don't we try throwing our own exceptions? This is

very straightforward and only requires the use of the "throw" keyword and (typically) an Error Object:

Notice how the code below the "throw" statement does not get executed, and the flow of execution goes

directly into the catch block. This prevents the error from propagating and ensures that it is handled

immediately. As you can see, we can throw a new error whenever we detect that an error may occur

anywhere in our code. In the above example, we check if our second parameter (y) is zero (0) and rather

than trying to do the division, we immediately throw a custom error with the message "Division by Zero!". If

the function call exists in a "try" block (as above), the execution of the code will immediately continue in the

"catch" block and we mitigate the error by setting "c" to NaN.

console.log(`Alas, it cannot be done, PI remains: ${PI}`);

function divide(x, y) {
 if (y == 0) {
 throw new Error('Division by Zero!');
 }
 return x / y;
}

let a = 3,
 b = 0,
 c;

try {
 c = divide(a, b);
} catch (ex) {
 console.log(`uh oh, an error occurred: ${ex.message}`);
 // outputs: uh oh, an error occurred: Division by Zero!
 c = NaN;
}

console.log(`${a} / ${b} = ${c}`); // 3 / 0 = NaN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw
https://nodejs.org/docs/latest/api/errors.html#class-error

Example Code

You may download the sample code for this topic here:

JavaScript-Review

https://github.com/WPTF-Examples/JavaScript-Review

On this page

Callbacks

Before we begin to discuss "callbacks" and other methods for working with asynchronous logic within our

programs, we should first define what "asynchronous programming" is:

"Asynchronous programming is a technique that enables your program to start a potentially long-

running task and still be able to be responsive to other events while that task runs, rather than having to

wait until that task has finished. Once that task has finished, your program is presented with the result."

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing

This means that potentially long-running tasks will not cause delays within our main execution logic.

However, it also means that we need to find a way to execute code when a long-running task has completed

(ie: connecting to a database, reading a file, etc).

As a simple example of how JavaScript works with asynchronous code, we can refer back to our

"setTimeout" example; only this time we will wait 2 seconds (2000 milliseconds) and execute some code

before and after the function:

Here, we see the text output to the console is out of order, ie: "Hello" followed by "!" and (2 seconds later) we

finally see the text "World". This is because the "setTimeout" function is "asynchronous" and will not cause

the main flow of execution to wait (2 seconds) for it to complete. The function that is passed in the first

parameter of "setTimeout" (which is responsible for outputting "World" to the console) is a callback function:

"a function passed into another function as an argument, which is then invoked inside the outer function

to complete some kind of routine or action."

console.log('Hello');

setTimeout(() => {
 console.log('World');
}, 2000);

console.log('!');

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing
http://localhost:3000/Introduction/hello-world#settimeout
https://developer.mozilla.org/en-US/docs/Glossary/Callback_function

Defining Functions with Callbacks

Now that we know that a callback is really just a function passed to another function to perform an action

once some asynchronous logic is complete, let's try writing our own code. Here, we will be using the

setTimeout() function to approximate an asynchronous action such as connecting to a database.

For our first example, let's say that we have a function called "connectToDatabase" that establishes a

database connection after a random amount of time (between 1 and 2000 milliseconds). We also have a

function called "queryData" that also takes a random amount of time to complete (in this case, it is between

1 and 1000 milliseconds).

For our code to work correctly, we must first connect to the database, then query the data. To accomplish

this, we would intuitively write the code to invoke the functions in order, ie:

However, this poses a problem as there's no way to ensure that the logic to connect to the database

happens before the query. In fact, since it takes longer to connect to the database, it's more likely that the

query logic will complete first.

One way to solve this problem is to provide the "queryData()" function as a callback function to

"connectToDatabase()" to be executed once the connection has been established:

function connectToDatabase() {
 let randomTime = Math.floor(Math.random() * 2000) + 1;

 setTimeout(() => {
 console.log('Connection Established');
 }, randomTime);
}

function queryData() {
 let randomTime = Math.floor(Math.random() * 1000) + 1;

 setTimeout(() => {
 console.log('Query Complete');
 }, randomTime);
}

connectToDatabase();
queryData();

https://nodejs.org/docs/latest/api/timers.html#settimeoutcallback-delay-args

Notice how we have added "queryFunction" as a parameter to the connectToDatabase() function. Once the

connection has been established, we manually invoke the function using "()".

Now, we can ensure that the functions are executed in order, using the code:

Adding Parameters

As our code stands now, the "queryData" function is very simple and does not take any parameters. Why

don't we try making it a little more dynamic by adding parameters to it, so that a query can be provided:

Now we can invoke our queryData with a given query, for example:

However, a problem occurs when we attempt to provide the "queryData" function as a callback to another

function (in our case, the "connectToDatabase" function):

function connectToDatabase(queryFunction) {
 let randomTime = Math.floor(Math.random() * 2000) + 1;

 setTimeout(() => {
 console.log('Connection Established');
 queryFunction();
 }, randomTime);
}

connectToDatabase(queryData);

function queryData(query) {
 let randomTime = Math.floor(Math.random() * 1000) + 1;

 setTimeout(() => {
 console.log(query);
 }, randomTime);
}

queryData('select * from Employees');

This is because the "()" syntax after the function name causes the function to execute which then passes its

return value ("undefined") to the connectToDatabase function. To solve this, we must pass the parameters to

the "queryData()" callback function, as parameters to the "connectToDatabase()" function:

Here, you can see that we have added the "query" as a 2nd parameter to the connectToDatabase function

and use it as a parameter to the "queryFunction".

Putting it all together, we get:

connectToDatabase(queryData('select * from Employees')); // TypeError:
queryFunction is not a function

function connectToDatabase(queryFunction, query) {
 let randomTime = Math.floor(Math.random() * 2000) + 1;

 setTimeout(() => {
 console.log('Connection Established');
 queryFunction(query);
 }, randomTime);
}

function connectToDatabase(queryFunction, query) {
 let randomTime = Math.floor(Math.random() * 2000) + 1;

 setTimeout(() => {
 console.log('Connection Established');
 queryFunction(query);
 }, randomTime);
}

function queryData(query) {
 let randomTime = Math.floor(Math.random() * 1000) + 1;

 setTimeout(() => {
 console.log(query);
 }, randomTime);
}

connectToDatabase(queryData, 'select * from Employees');

On this page

Promises & Async / Await

As we have seen in our "callbacks" discussion, JavaScript is "asynchronous" in nature. Code can be written

to respond to events or wait for tasks to complete before executing. One way of handling such situations was

to enclose our "follow up" logic in a function that may be passed to another function to be executed (typically,

after some asynchronous logic has completed such as connecting to a database, or reading a file).

Callback Review

As a quick review of the callback logic discussed earlier, consider the following three functions:

// output "A" after a random time between 0 & 3 seconds
function outputA() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 setTimeout(() => {
 console.log('A');
 }, randomTime);
}

// output "B" after a random time between 0 & 3 seconds
function outputB() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 setTimeout(() => {
 console.log('B');
 }, randomTime);
}

// output "C" after a random time between 0 & 3 seconds
function outputC() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 setTimeout(() => {
 console.log('C');
 }, randomTime);
}

http://localhost:3000/Handling-Asynchronous-Code/callbacks

If we were to execute them in order, ie:

we would have no idea which letter would be output to the console first ("A", "B", or "C"), since each function

takes a random amount of time to complete. If however, we wanted to be absolutely sure that the output of

the code is in the correct order ("A", "B", "C") regardless of how long it takes each function to execute, we

must ensure that the "follow up" functions are passed as parameters to the functions with the asynchronous

logic (ie: "callbacks"). This case is more complicated because we have 3 functions, however it can still be

achieved using the following code:

outputA();
outputB();
outputC();

// output "A" after a random time between 0 & 3 seconds
function outputA(firstCallback, secondCallback) {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 setTimeout(() => {
 console.log('A');
 firstCallback(secondCallback);
 }, randomTime);
}

// output "B" after a random time between 0 & 3 seconds
function outputB(lastCallback) {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 setTimeout(() => {
 console.log('B');
 lastCallback();
 }, randomTime);
}

// output "C" after a random time between 0 & 3 seconds
function outputC() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 setTimeout(() => {
 console.log('C');
 }, randomTime);
}

In the above code, we have ensured the correct flow of execution of the three functions by passing both

follow up functions to the first function as parameters. The final function is then passed to the second

function as a callback, so that it may be executed in the right order.

While this does indeed work to solve the intended problem (getting the output to happen in order: "A", "B"

then "C"), we have created some code which is difficult to follow, maintain and scale. For example, what

happens when we add an "outputD()" function? We would need to pass it as well to the outputA() function as

a parameter, only to get passed down the chain until it is executed in the correct context (for example, after

outputC() has completed). As you can imagine, this creates a problem in our code and leaves us asking: "is

there a better way?"

Promises

Resolve & Then

Fortunately, JavaScript has the notion of the "Promise" that can help us deal with this type of situation. Put

simply, a promise object is used for asynchronous computations (like the situation in the example above) and

represents a value which may be available now, or in the future, or never. Basically, what this means is that

we can place our asynchronous code inside a promise object as a function with specific parameters

("resolve" and "reject"). When our code is complete, we invoke the "resolve" function and if our code

encounters an error, we can invoke the "reject" function. We can handle both of these situations later with the

.then() method or (in the case of an error that we wish to handle) the .catch() method. To see how this

concept is implemented in practice, consider the following addition to the outputA() method from above:

// invoke the functions in order

outputA(outputB, outputC);

// output "A" after a random time between 0 & 3 seconds
function outputA() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 return new Promise((resolve, reject) => {
 // place our code inside a "Promise" function
 setTimeout(() => {
 console.log('A');
 resolve(); // call "resolve" because we have completed the function
successfully
 }, randomTime);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/reject
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch

Our "outputA()" function still behaves as it did before (outputs "A" to the console after a random period of

time). However, our outputA() function now additionally returns a new Promise object that contains all of our

asynchronous logic and its status. The container function for our logic always uses the two parameters

mentioned above, ie: resolve and reject. By invoking the resolve method we are placing the promise into

the fulfilled state, meaning that the operation completed successfully and the character "A" was successfully

output to the console. We can respond to this situation using the "then" function on the returned promise

object to execute some code after the asynchronous operation is complete! This gives us a mechanism to

react to asynchronous functions that have completed successfully so that we can perform additional tasks.

Adding Data

Now that we have the promise structure in place and are able to "resolve" the promise when it has

completed it's task and "then" execute another function using the returned promise object (as above), we

can begin to think about how to pass data from the asynchronous function to the "then" method. Fortunately,

it only requires a little tweak to the above the above example to enable this functionality:

 });
}

// call the outputA function and when it is "resolved", output a confirmation to
the console

outputA().then(() => {
 console.log('outputA resolved!');
});

// output "A" after a random time between 0 & 3 seconds
function outputA() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 return new Promise((resolve, reject) => {
 // place our code inside a "Promise" function
 setTimeout(() => {
 console.log('A');
 resolve('outputA resolved!'); // call "resolve" because we have completed
the function successfully
 }, randomTime);
 });
}

// call the outputA function and when it is "resolved", output a confirmation to

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then

Notice how we are able to invoke the resolve() function with a single parameter that stores some data (in

this case a string with the text "outputA resolved!"). This is typically where we would place our freshly

returned data from an asynchronous call to a web service / database, etc. The reason for this is that we will

have access to it as the first parameter to the anonymous function declared inside the .then method and this

is the perfect place to process the data.

Reject & Catch

It is not always safe to assume that our asynchronous calls will complete successfully. What if we're in the

middle of a request and our connection is dropped or a database connection fails? To ensure that we handle

this type of scenario gracefully, we can invoke the "reject" method instead of the "resolve" method and

provide a reason why our asynchronous operation failed. This causes the promise to be in a "rejected" state

and the ".catch" function will be invoked, where we can gracefully handle the error. The typical syntax for

handling both "then" and "catch" in a promise is as follows:

the console

outputA().then((data) => {
 console.log(data);
});

// output "A" after a random time between 0 & 3 seconds
function outputA() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 return new Promise((resolve, reject) => {
 // place our code inside a "Promise" function
 setTimeout(() => {
 console.log('-');
 reject('outputA rejected!'); // call "reject" because the function
encountered an error
 }, randomTime);
 });
}

// call the outputA function and when it is "resolved" or "rejected, output a
confirmation to the console

outputA()
 .then((data) => {
 console.log(data);
 })

NOTE: Calling "resolve()" or "reject()" won't immediately exit the promise and invoke the related ".then()"

or ".catch()" callback - it simply puts the promise in a "resolved" or "rejected" state and code

immediately following the statement will still run, ie:

If we want to immediately exit the function and prevent further execution of the code within the promise,

we can invoke the "return" statement, immediately following the "resolve()" or "reject()" call, ie:

Putting it Together

Now that we know how the promise object and pattern can help us manage our asynchronous code, let's

loop back to our original problem - ensuring that "A", "B" and "C" are output in the correct order when

invoking the "outputA()", "outputB()" and "outputC()" functions, respectfully.

To make it more interesting, we will alter our code such that each of the functions resolve with the value if

the randomTime is odd and reject with an error if randomTime is even:

 .catch((reason) => {
 console.log(reason);
 });

// ...
reject();
console.log('I will still be executed');
resolve(); // This promise will not be "resolved", since the resolve() call
came after reject()
// this also works the other way around. A promise has been "settled" once
reject or resolve has been called
// ...

// ...
reject();
return;
console.log('I will not be executed');
// ...

// output "A" after a random time between 0 & 3 seconds
function outputA() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

If we wish to use the promises correctly to output the values in order and correctly handles errors, our code

looks like the following (this is known as promise "chaining"):

 return new Promise((resolve, reject) => {
 setTimeout(() => {
 randomTime % 2 ? resolve('A') : reject('Error with outputA()');
 }, randomTime);
 });
}

// output "B" after a random time between 0 & 3 seconds
function outputB() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 return new Promise((resolve, reject) => {
 setTimeout(() => {
 randomTime % 2 ? resolve('B') : reject('Error with outputB()');
 }, randomTime);
 });
}

// output "C" after a random time between 0 & 3 seconds
function outputC() {
 let randomTime = Math.floor(Math.random() * 3000) + 1;

 return new Promise((resolve, reject) => {
 setTimeout(() => {
 randomTime % 2 ? resolve('C') : reject('Error with outputC()');
 }, randomTime);
 });
}

outputA()
 .then((data) => {
 console.log(data); // output the result of "outputA()" to the console
 return outputB();
 })
 .then((data) => {
 console.log(data); // output the result of "outputB()" to the console
 return outputC();
 })
 .then((data) => {
 console.log(data); // output the result of "outputC()" to the console
 })

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises#chaining

Success! We always have "A", followed by "B" and "C" in the console and the errors are correctly handled

when they occur (preventing the subsequent promises from executing). We have the benefit of not having to

alter the functions themselves at all if follow-up logic is necessary. Each function simply does its job, then

reports back with the data ("resolves") if it was successful or sends the error ("rejects") it failed. This is a

much more maintainable, scalable and cleaner approach to working with asynchronous code. This is why

you will find that most modules mentioned in these notes are "promise-based", ie: if their logic is

asynchronous, functions provided by the module will return Promise objects.

While functions that return promises are indeed the preferred way to work with asynchronous operations in

JavaScript, as you can see from the above code, working with promises can sometimes be difficult. If we

wish to chain promises (in the case above) We must ensure that for every "then()" callback function returns

the correct follow up function and it can be difficult to visually walk through the code.

Async & Await

To help us work with promises more easily in JavaScript, ECMAScript 2016 (ES7) released async & await as

an alternative to using "then()" and "catch()"

Putting it Together (again)

Knowing that there is an alternative to "then()" and "catch()", let's see how we can re-write the section of

"Putting it Together" that makes use of the promises (we will not alter the functions themselves) using

"async" and "await". To achieve this, we must place our logic inside a function, ie "showOutput()" - the

reason for this will be described below:

 .catch((err) => {
 console.log(err); // output the error to the console
 });

async function showOutput() {
 try {
 let A = await outputA();
 console.log(A); // output the result of "outputA()" to the console

 let B = await outputB();
 console.log(B); // output the result of "outputB()" to the console

 let C = await outputC();
 console.log(C); // output the result of "outputC()" to the console

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

This is much cleaner and easier to read. By using the "await" operator, we're essentially saying "wait for this

function's returned promise to resolve". Additionally, you can see that we actually get the resolved value from

the promise!

Using Await

"await" pauses the execution of its surrounding async function until the promise is settled (that is,

fulfilled or rejected). When execution resumes, the value of the await expression becomes that of the

fulfilled promise.

If the promise is rejected, the await expression throws the rejected value.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

Notice how the documentation mentions the "surrounding async function". This is because to actually use

the "await" operator, it must be placed within a function marked as "async". If we fail to do this and try to use

await outside of an async function, we will get an error:

You will also notice how the documentation mentions that if the promise is rejected, the await expression

"throws the rejected value". This is why we must place our "await" logic within a "try" / "catch" block. If we fail

to do so and one of the promise-based functions is actually rejected, we will get the following error (NOTE:

this error also occurs if a ".catch()" function is missing when using then() & catch()):

 } catch (err) {
 console.log(err); // output the error for outputA(), outputB() or outputC()
to the console
 }
}

showOutput();

SyntaxError: await is only valid in async functions and the top level bodies of
modules

UnhandledPromiseRejection: This error originated either by throwing inside of an
async function without a catch block, or by rejecting a promise which was not
handled with .catch().

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

NOTE: When using "async" to identify a function, you are implicitly returning a Promise. This is

because async functions cannot exist within the normal flow of execution (since they contain

asynchronous code). If you do return a value from an "async" function, it will be the "resolved" value of

the returned promise:

async function adder(num1, num2) {
 return num1 + num2;
}

adder(1, 2).then((result) => console.log(result)); //3

Example Code

You may download the sample code for this topic here:

Handling-Asynchronous-Code

https://github.com/WPTF-Examples/Handling-Asynchronous-Code

On this page

HTTP Protocol Overview

The HTTP Protocol itself is an Application layer protocol – that is, it essentially sits “on top” of an underlying

network-level protocol such as the Transmission Control Protocol (TCP). HTTP is human-readable and

extensible, which makes the protocol extremely easy to extend and to experiment with. New functionality can

be introduced simply by establishing an agreement between a client and a server and specifying new

“headers” – these will enable the client and server to pass additional information along with the request or

the response. The payload content (ie: raw HTML) is sent in the “message body”.

Both HTTP requests and responses share a similar structure and are composed of:

A start-line that describes the requests to be performed, or its status that is a success or a failure. This

start-line is always a single line.

An optional set of HTTP headers specifying the request, or describing the body included in the

message.

A blank line indicating that all meta-information for the request has been sent.

An optional body that contains data associated with the request (like the content of an HTML form), or

the document associated with a response. The presence of the body and its size is defined by the start-

line and the HTTP headers.

POST / HTTP/1.1

Host: developer.mozilla.org

User-Agent: curl/8.6.0

Accept: */*

Content-Type: application/json

Content-Length: 345

{

"data": "ABC123"

}

HTTP/1.1 403 Forbidden

Server: Apache

Date: Fri, 21 Jun 2024 12:52:39 GMT

Content-Length: 678

Content-Type: text/html

Cache-Control: no-store

<!DOCTYPE html>

<html lang="en">

(more data…)

Request Response

Start line

Headers

Empty line

Body

(https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages)

HTTP Requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Start line

HTTP requests are messages sent by the client to initiate an action on the server. Their start-line contains of

three elements:

1. An HTTP method that describes the action to be performed:

Method Description

GET

The GET method is used to retrieve information from a specified URI (Universal

Resource Identifier) and is assumed to be a safe, repeatable operation by browsers,

caches and other HTTP aware components. This means that the operation must have

no side effects and GET requests can be re-issued without worrying about the

consequences.

POST

The POST method requests that the target resource process the representation

enclosed in the request according to the resource’s own specific semantics. For

example, POST is used for the following functions (among others):

Providing a block of data, such as the fields entered into an HTML form, to a

data-handling process

Posting a message to a bulletin board, newsgroup, mailing list, blog, or similar

group of articles

Creating a new resource that has yet to be identified by the origin server.

Appending data to a resource’s existing representation(s).

PUT

The PUT method is used to request that server store the content included in message

body at a location specified by the given URL. For example, this might be a file that

will be created or replaced.

HEAD

The HEAD method is identical to GET except that the server MUST NOT send a

message body in the response (i.e., the response terminates at the end of the header

section). This method can be used for obtaining metadata about the selected

representation without transferring the representation data

https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.2

Method Description

DELETE

The DELETE method requests that the origin server remove the association between

the target resource and its current functionality. In effect, this method is similar to the

rm command in UNIX: it expresses a deletion operation on the URI mapping of the

origin server.

CONNECT

The CONNECT method requests that the recipient establish a tunnel to the

destination origin server identified by the request-target and, if successful, thereafter

restrict its behavior to blind forwarding of packets, in both directions, until the tunnel is

closed. Tunnels are commonly used to create an end-to-end virtual connection,

through one or more proxies, which can then be secured using TLS (Transport Layer

Security).

OPTIONS

The OPTIONS method requests information about the communication options

available for the target resource. This method allows a client to determine the options

and/or requirements associated with a resource, or the capabilities of a server,

without implying a resource action.

TRACE

The TRACE method requests a remote, application-level loop-back of the request

message. This is typically used to echo the contents of an HTTP Request back to the

requester which can be used for debugging purposes during development.

2. The request target (this can vary between the different HTTP methods) – for example, this can be:

An absolute path, optionally followed by a ‘?’ and a query string. This is the most common form,

called origin form, and is used with GET, POST, HEAD, and OPTIONS methods, for example:

POST / HTTP 1.1

GET /background.png HTTP/1.0

HEAD /test.html?query=alibaba HTTP/1.1

OPTIONS /anypage.html HTTP/1.0

A complete URL, the absolute form, mostly used with GET when connected to a proxy, for example:

GET http://developer.mozilla.org/en-US/docs/Web/HTTP/Messages HTTP/1.1

The authority component of an URL, that is the domain name and optionally the port (prefixed by a

‘:’), called the authority form. It is only used with CONNECT when setting up an HTTP tunnel, for

https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.6
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7231#section-4.3.8

example:

CONNECT developer.mozilla.org:80 HTTP/1.1

The asterisk form, a simple asterisk (‘*’) used with OPTIONS and representing the server as a

whole, for example:

OPTIONS * HTTP/1.1

3. The HTTP version, that defines the structure of the rest of the message, and acts as an indicator of the

version to use for the response.

Headers

HTTP headers in a request follow the basic structure of any HTTP header: a case-insensitive string followed

by a colon (‘:’) and a value whose structure depends upon the header. The whole header, including the

value, consists of one single line, that can be quite long.

There are numerous request headers available. In a request, the headers can be divided into two groups:

Request headers: Provide additional context to a request or add extra logic to how it should be treated

by a server (e.g., conditional requests).

Representation headers: Sent in a request if the message has a body, and they describe the original

form of the message data and any encoding applied. This allows the recipient to understand how to

reconstruct the resource as it was before it was transmitted over the network.

(https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages)

Body

The last part of a request is its body. Not all requests have one: for example, requests fetching resources

(like GET or HEAD) usually don’t need any. Similarly, DELETE or OPTIONS also do not require a body.

Other requests send data in the body to the server in order to update it: this is often the case of POST

requests (that can have HTML form data).

HTTP Responses

http://www.iana.org/assignments/message-headers/message-headers.xhtml
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Status line

The start line of an HTTP response, called the status line, contains the following information:

1. The protocol version, usually HTTP/1.1

2. A status code beginning with 1, 2, 3, 4 or 5 that provides information such as the success or failure of

the request:

Range Description

1xx

Informational: Request received, continuing process.

For example, Microsoft IIS (Internet Information Services) initially replies with 100

(Continue) when it receives a POST request and then with 200 (OK) once it has been

processed.

2xx

Success: The action was successfully received, understood, and accepted.

For example, the 200 (Ok) status code indicates that the request has succeeded. The

meaning of “success” varies depending on the HTTP method:

GET: The resource has been fetched and is transmitted in the message body.

HEAD: The entity headers are in the message body.

POST: The resource describing the result of the action is transmitted in the message

body.

TRACE: The message body contains the request message as received by the server

3xx

Redirection: Further action must be taken in order to complete the request.

For example, The 302 (Found) status code indicates that the requested resource has

been temporarily moved and the browser should issue a request to the URL supplied in

the Location response header.

http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://tools.ietf.org/html/rfc7231#section-6.2
https://tools.ietf.org/html/rfc7231#section-6.2.1
https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-6.3
https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-6.4
https://tools.ietf.org/html/rfc7231#section-6.4.3

Range Description

4xx

Client Error: The request contains bad syntax or cannot be fulfilled.

For example, the famous 404 (Not Found) status code indicates that the server can not

find requested resource, or is not willing to disclose that one exists.

5xx

Server Error: The server failed to fulfill an apparently valid request.

For example, the 500 (Internal Server Error) status code indicates that the server

encountered an unexpected error / condition that prevented it from fulfilling the

request./td>

3. A status text, purely informational, that is a textual short description of the status code. This helps HTTP

messages be more human-readable, for example:

HTTP/1.1 404 Not Found

Headers

The HTTP header format for responses follow the same basic structure (a case-insensitive string followed by

a colon (‘:’) and a value whose structure depends upon the type of the header. The whole header, including

the value, stands in one single line)

There are numerous response headers available. In a response, the headers can be divided into two groups:

Response headers: Give additional context about the message or add extra logic to how the client

should make subsequent requests. For example, headers like Server include information about the

server software, while Date includes when the response was generated. There is also information about

the resource being returned, such as its content type (Content-Type), or how it should be cached

(Cache-Control).

Representation headers: Describe the form of the message data and any encoding applied (if the

message has a body). For example, the same resource might be formatted in a particular media type

such as XML or JSON, localized to a particular written language or geographical region, and/or

compressed or otherwise encoded for transmission. This allows a recipient to understand how to

reconstruct the resource as it was before it was transmitted over the network.

https://tools.ietf.org/html/rfc7231#section-6.5
https://tools.ietf.org/html/rfc7231#section-6.5.4
https://tools.ietf.org/html/rfc7231#section-6.6
https://tools.ietf.org/html/rfc7231#section-6.6.1
http://www.iana.org/assignments/message-headers/message-headers.xhtml

(https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages)

Body

The last part of a response is the body. This is typically a single file of known length (defined by the two

headers: “Content-Type” and “Content-Length”) or a single file of unknown length (encoded in chunks with

the “Transfer-Encoding” header set to “chunked”. However, not all responses have a body, for example:

responses with status code like 201 (Created) or 204 (No Content).

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7230#section-3.3.1

On this page

Modules & Node Package

Manager

Modules

Recall way back in the Introduction, the concept of "Built-In Modules / 'require()'" was discussed:

"By using the global 'require' function, we have loaded a code "module" which contains code and logic

that we can use in our own solutions."

We used this to gain access to some of the built in logic that ships with Node, including: 'fs', 'path' and

'readline'.

Writing Modules

We can also create our own modules that work the same way, by making use of a global “module” object –

which isn’t truly “global” in the same sense as “console”, but instead global to each of your modules, which

are located in separate .js files. For example, consider the two following files (modEx1.js: the main file that

Node will execute, and message.js: the file containing the module):

file ./modEx1.js

file: ./modules/message.js

let message = require('./modules/message');

message.writeMessage('Hello World!');

message.readMessage();

// NOTE: Node.js wraps the contents of this file in a function:
// (function (exports, require, module, __filename, __dirname) { ... });
// so that we have access to the working file/directory names as well
// as creating an isolated scope for the module, so that our

http://localhost:3000/Introduction/hello-world#built-in-modules--require
https://nodejs.org/docs/latest/api/esm.html#require
https://nodejs.org/docs/latest/api/fs.html
https://nodejs.org/docs/latest/api/path.html
https://nodejs.org/docs/latest/api/readline.html
https://nodejs.org/docs/latest/api/modules.html#the-module-object

Executing the code in modEx1.js (ie: node modEx1.js) should output:

“Hello World” from …

where … is the absolute location of the message.js file in your system, for example:

/Users/pat/Desktop/Seneca/modules/message.js

Notice how our “message” module uses the exports property of the “module” object to store functions and

data that we want to be accessible in the object returned from the require(“./modules/message”); function

call from modEx1.js. Generally speaking, if you want to add anything to the object returned by “require” for

your module, it’s added to the module.exports object from within your module. In this case, we only added

two functions (readMessage() and writeMessage()).

Using this methodology, we can safely create reusable code in an isolated way that can easily be added

(plugged in) to another .js file.

NPM – Node Package Manager

The Node Package Manager is a core piece of the module based Node ecosystem. The package manager

allows us to install and manage 3rd party modules, available from https://www.npmjs.com within our own

applications.

From the npm documentation:

// variables are not global.

let localFunction = () => {
 // a function local to this module
};

let localMessage = '';

module.exports.writeMessage = (msg) => {
 localMessage = msg;
};

module.exports.readMessage = () => {
 console.log(`${localMessage} from ${__filename}`);
};

https://nodejs.org/docs/latest/api/modules.html#moduleexports
https://nodejs.org/docs/latest/api/modules.html#the-module-object
https://www.npmjs.com/
https://docs.npmjs.com/about-npm

npm is the world's largest software registry. Open source developers from every continent use npm to

share and borrow packages, and many organizations use npm to manage private development as well.

npm consists of three distinct components:

the website

the Command Line Interface (CLI)

the registry

Use the website to discover packages, set up profiles, and manage other aspects of your npm

experience. For example, you can set up organizations to manage access to public or private packages.

The CLI runs from a terminal, and is how most developers interact with npm.

The registry is a large public database of JavaScript software and the meta-information surrounding it.

The CLI is installed by default when you install Node. From the command line you can run ‘npm’ with various

commands to download and remove packages for use with your Node applications. When you have installed

a package from npm you use it in the same way as using your own modules like above, with the require()

function.

All npm packages that you install locally for your application will be installed in a node_modules folder in your

project folder.

While there are over 60 "npm" commands available, the ones that we will most commonly use in this course

are as follows:

npm install [Module

Name]

install is used to install a package from the npm repository so that you can

use it with your application. ie: let express = require(“express”);

npm uninstall [module

name]

uninstall does exactly what you would think, it uninstalls a module from the

node_modules folder and your application will no longer be able to require()

it.

npm init create a new package.json file for a fresh application. More on this part later.

npm prune

The prune command will look through your package.json file and remove

any npm modules that are installed that are not required for your project.

More on this part later.

https://npmjs.com/
https://www.npmjs.com/features
https://docs.npmjs.com/cli/npm
https://docs.npmjs.com/misc/registry
https://docs.npmjs.com/cli/commands
https://docs.npmjs.com/cli/v8/commands/npm-install
https://docs.npmjs.com/cli/v8/commands/npm-uninstall
https://docs.npmjs.com/cli/v8/commands/npm-init
https://docs.npmjs.com/cli/v8/commands/npm-prune

npm list Show a list of all packages installed for use by this application.

Globally installing packages

Every so often, you will want to install a package globally. Installing a package globally means you will install

it like an application on your computer which you can run from the command line, not use it in your

application code. For example, some npm packages are tools that are used as part of your development

process on your application:

One example is the migrate package which allows you to write migration scripts for your application that can

migrate your data in your database and keep track of which files have been run.

Another example is grunt-cli so that you can run grunt commands from the command line to do things like

setup tasks for running unit tests or checking for formatting errors in code before pushing up new code to a

repository.

A third example is bower. Bower is a package manager similar to npm but typically used for client side

package management. To install a package globally you just add the -g switch to your npm install command.

For example:

Globally installed packages do not get installed in your node_modules folder and instead are installed in a

folder in your user directory. The folder uses for global packages varies for Windows, Mac, and Linux. See

the documentation if you need to find globally installed packages on your machine.

package.json explained

The Node Package Manager is great. It provides an easy way to download reusable packages or publish

your own for other developers to use. However, there are a few problems with sharing modules and using

other modules, once you want to work on an application with someone else. For example:

How are you going to make sure everyone working on your project has all the packages the application

requires?

How are you going to make sure everyone has the same version of all those packages?

Finally, how are you going to handle updating a package and making sure everyone else on your project

updates as well?

npm install bower -g

https://docs.npmjs.com/cli/v8/commands/npm-ls
https://www.npmjs.com/package/migrate
https://www.npmjs.com/package/grunt-cli
https://www.npmjs.com/package/bower

This is where the package.json file comes in.

The package.json file is a listing of all the packages your application requires and also which versions are

required. It provides a simple way for newcomers to your project to get started easily and stay up to date

when packages get updated.

The npm documentation for the package.json file has all the information you will need as you begin building

applications in node.js

Let’s look at how we can generate a package.json file using the npm init command from within your project's

folder (in this case: "/Users/pat/Desktop/Seneca/"):

$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See `npm help init` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg>` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
package name: (seneca)
version: (1.0.0)
description:
entry point: (index.js)
test command:
git repository:
keywords:
author:
license: (ISC)
About to write to /Users/pat/Desktop/Seneca/package.json:

{
 "name": "seneca",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"

https://docs.npmjs.com/getting-started/using-a-package.json

If you try running this command yourself, you will see that the process is interactive, ie: you will be prompted

to enter everything from the "package name" to the "license". Any values that you see in brackets "()" are

default values and will be accepted if you press "Enter".

Once this process is done, you will see that you have a new file created in your project called package.json.

In the above case, it will look like this:

Once generated, you can edit it if you decide to change the name or version (for example). Once you decide

to add packages to your app you can simply install the package with npm install. This will save the package

and version into the package.json file for you so that when others want to work on your app, they will have

the package.json file and can use npm install to install all the required dependencies with the right version.

Think of package.json as a checklist for your application for all of its dependencies.

}

Is this OK? (yes)

{
 "name": "seneca",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

On this page

Simple Web Server using

Express.js

A major focus of these notes going forward will be creating modern web applications using Node.js. While

are many ways of accomplishing this task, including using the built-in 'http' module, we will be using the

extremely popular "Express" web framework, available on NPM.

Project Structure

To get started working with Node.js and Express, we should create a new folder for our application (ie:

"MyServer", as used in the below example). Once this is completed, open it in Visual Studio Code and create

the following directory structure by adding "public" and "views" folders as well as a "server.js" file:

Next, we must open the integrated terminal and create the all-important "package.json" file at the root of our

"MyServer" folder, using the command "npm init".

NOTE: You will be using all of the default options when creating your package.json file

Once this is complete, you should have a new package.json file in your MyServer folder that looks like the

following:

/MyServer
 ↪ /public
 ↪ /views
 ↪ server.js

{
 "name": "myserver",
 "version": "1.0.0",
 "description": "",
 "main": "server.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "node server.js"

https://nodejs.org/docs/latest/api/http.html
https://expressjs.com/
https://www.npmjs.com/package/express

Express.js

Express.js is described as:

"a minimal and flexible Node.js web application framework that provides a robust set of features for web

and mobile applications."

Essentially, it is a Node module that takes a lot of the leg work out of creating a framework to build a website.

It is extremely popular in the node.js community with a multitude of developers using it to build websites. It is

a proven way to build flexible web applications quickly and easily.

To use it in our project we need to use "npm" to install it. From the integrated terminal in Visual Studio code,

enter the command:

(where "i" is shorthand for the "install" command).

Once this is complete, you should see that your "package.json" file has a new entry that looks like the

following (NOTE: Your version may differ from the below):

You will also notice that a 2nd file was created called "package-lock.json":

The purpose of package-lock.json is to ensure that the same dependencies are installed consistently

across different environments, such as development and production environments. It also helps to

prevent issues with installing different package versions, which can lead to conflicts and errors.

https://www.atatus.com/blog/package-json-vs-package-lock-json/#package-lock-json

 },
 "author": "",
 "license": "ISC"
}

npm i express

"dependencies": {
 "express": "^4.18.2"
 }

https://www.atatus.com/blog/package-json-vs-package-lock-json/#package-lock-json

Finally, we also now have the aforementioned "node_modules" folder, which not only contains an "express"

folder, but also folders for all of the other modules that "express" depends upon, such as "cookie",

"encodeurl", "http-errors", etc.

To begin using Express.js, we must first "require" it in our server.js file and execute the code to start our

server. As a starting point, you may use the following boilerplate code:

File: server.js

The above code will be used in nearly every server written using "Express" in these notes. As mentioned

above, it "requires" the Express module, which is then invoked as a function to get an "app" object, which is

used to start our server on a given HTTP Port. The reason that the HTTP_PORT constant is defined as

process.env.PORT || 8080 is because when we move our server online, it will be assigned a different

port, using a "PORT" environment variable.

If we now want to start our server, we can simply execute the "server.js" file using node:

NOTE: the "--watch" flag will cause Node to run in "watch" mode, which will restart the process when a

change is detected

If you open a browser to: http://localhost:8080 , you should see the following message:

Congratulations! Your web server is up and running! Unfortunately, we don't have any "routes" (ie: paths to

pages / resources) defined yet, so the Express framework automatically generated a 404 error for the path

that we tried to access (ie: GET /)

NOTE: To stop the server from running, you may use the Ctrl+C command from the integrated

terminal in Visual Studio Code

const express = require('express'); // "require" the Express module
const app = express(); // obtain the "app" object
const HTTP_PORT = process.env.PORT || 8080; // assign a port

// start the server on the port and output a confirmation to the console
app.listen(HTTP_PORT, () => console.log(`server listening on: ${HTTP_PORT}`));

node --watch server.js

Cannot GET /

Simple 'GET' Routes

As you have seen from running our server, not much is happening. Even if we try to navigate around to other

paths such as "http://localhost:8080/about" (thereby making a "GET" request to the "/about" path (route)), we

will keep getting the same 404 error: "Cannot GET". This is because we have not defined any "GET" routes

within our server.

To fix this, we must write code in our server.js file to correctly respond to these types of requests. This can

be accomplished using the "app" object, that was used to start our server. If we wish to respond to a "GET"

request, we must invoke a "GET" function and provide the target path as well as a "callback" function to

handle the request. For example, if we wish to respond to a "GET" request on the "/" route, we would write

the following code before the call to app.listen();

Here, we have specified a callback function to be executed when our server encounters a "GET" request for

the "/" route. It will be invoked with the following parameters:

"req": The "request" object represents the HTTP request and has properties for the request query string,

parameters, body, HTTP headers, and so on.

"res": "The "response" object represents the HTTP response that an Express app sends when it gets an

HTTP request

In the above case, we use the "res" object's "send" method to send a response back to the client.

If we wish to have a second route, all we have to do is add another call to "app.get()" with the new path. This

is how we will define any path "route" that we wish our server to respond to, when it encounters a "GET"

request from a web client (ie: web browser):

Now, we should be able to navigate to both: http://localhost:8080 and

http://localhost:8080/about and see the text sent by our server.

app.get('/', (req, res) => {
 res.send('Hello World!');
});

app.get('/about', (req, res) => {
 res.send('About the Company');
});

https://expressjs.com/en/api.html#app
https://expressjs.com/en/api.html#req
https://expressjs.com/en/api.html#res
https://expressjs.com/en/api.html#res.send
https://expressjs.com/en/api.html#app.get.method

Returning .html Files

Returning plain text is fine to test if our routes are configured properly, however if we want to start making

web applications, we should be returning valid HTML documents. To get started, we will create two simple

.html files within the "views" folder:

File: /MyServer/views/home.html

File: /MyServer/views/about.html

Next, we must update our route definitions to return these documents instead of the simple messages: "Hello

World!" and "About the Company". To achieve this, we will be using the "sendFile()" method of the "res"

object, instead of "send()".

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Home</title>
 </head>
 <body>
 <h1>Welcome Home</h1>
 <p>...</p>
 <p>About the Company</p>
 </body>
</html>

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>About</title>
 </head>
 <body>
 <h1>About the Company</h1>
 <p>...</p>
 <p>Back Home</p>
 </body>
</html>

https://expressjs.com/en/api.html#res.sendFile

For "sendFile()" to function correctly, we must provide an absolute path to the file we wish to send as a

parameter to the function. As you know, we cannot hard-code this path into our server.js, as this path will

differ depending on which machine is executing the code - for example: the service the app is deployed on,

vs. your local computer.

This is where knowledge of the built-in "path" module and the __dirname global come into play.

At the top of your server file, we will require "path";

Next, we can update our routes to use "sendFile()" as follows:

where "someFile.html" would be any file that you wish to send back to the client, from your "views" folder,

ie: "home.html" or "about.html". We use path.join() to safely join the "__dirname" path with the local path

to the file. Together, this results in an absolute path that is not tied to a specific machine.

CSS & Images

Now that we know how to send complete HTML files back to the client, the next step is including "static"

resources, ie: images, CSS, etc. So far, if we wish to respond to a request from a client we must have an

explicit "route" configured. For example, the "/about" route only works because we have defined the

corresponding app.get("/about", ...) function call. What happens when a request for a static

resources is requested? Do we have to have a specific root configured for every resource? Thankfully, the

answer is no.

Using Express, we can identify a specific folder as "static" and any valid requests for resources contained

within that folder are automatically sent back to the client with a 200 status code.

Using our existing project structure, we can use the "public" folder as our static folder and place any static

resources in there. For example, if we want a custom CSS file, we could place it in:

const path = require('path');

res.sendFile(path.join(__dirname, '/views/someFile.html'));

/MyServer
 ↪ /public
 ↪ /css
 ↪ site.css

We could then link to it in our HTML documents the code:

NOTE: The same pattern would work for images as well, ie:

Notice how we do not include "/public" in the href (or src) properties. This is because we will mark

"/public" as the official "static" folder and all requests must made to resources within the folder. To

accomplish this in our server.js file, we can add the following code above the other app.get() function

calls:

Here, we have used "express.static()" - a built-in middleware function (explained later in these notes) to mark

the "public" directory as static. With this code in place, whenever a request is sent to our server, Express will

first check to see if the requested resource exists in the "public" folder, before checking our other routes.

Public Hosting (Vercel)

As a final exercise, review the documentation on "Getting Started with Vercel" and see if you can get the

server running online!

<link rel="stylesheet" href="/css/site.css" />

/MyServer
 ↪ /public
 ↪ /img
 ↪ banner.jpg

app.use(express.static('public'));

https://expressjs.com/en/api.html#express.static
https://expressjs.com/en/guide/using-middleware.html#middleware.application
http://localhost:3000/Resources/vercel-guide

Example Code

You may download the sample code for this topic here:

Web-Server-Introduction

https://github.com/WPTF-Examples/Web-Server-Introduction

On this page

What is a UI Toolkit / Framework?

Creating a web site / application that is functional, visually appealing and provides a good user experience

can be difficult. In fact, there are entire branches of web application development that focus entirely on the

front end and/or user experience (https://brainstation.io/career-guides/what-is-a-ui-designer). However, when

first developing your application, you may not have access to a UI / UX designer and so you must craft the

user interface yourself. Fortunately, there are a plethora of resources that can help with this task. The easiest

way to build your web application in a way that adheres to fundamental design principles, is to use a pre-built

CSS / JS UI toolkit or framework. These typically come with user interface "components" that are styled and

ready to use out of the box.

Popular Frameworks

The following is a list of some popular frameworks and how to quickly get started using them. Typically all we

need to do is include their CSS / JS files using a CDN, then reference the documentation for some

boilerplate, starter code, ie:

Bootstrap

One of oldest and most popular UI frameworks is "Bootstrap":

"Powerful, extensible, and feature-packed frontend toolkit. Build and customize with Sass, utilize prebuilt

grid system and components, and bring projects to life with powerful JavaScript plugins."

If we wish to incorporate Bootstrap into our projects, we can link to the files directly using the "jsdelivr"

Content Delivery Network (CDN):

<!-- Create a button in Bootstrap using the "Primary" colour -->
<button type="button" class="btn btn-primary">Primary</button>

<link
 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css"
 rel="stylesheet"
 integrity="sha384-

https://brainstation.io/career-guides/what-is-a-ui-designer
https://getbootstrap.com/

NOTE: It is important that we include the CDN links before our own CSS / JS.

Materialize

Back in June, 2014 Google introduced "Material Design":

"Material Design is an adaptable system of guidelines, components, and tools that support the best

practices of user interface design. Backed by open-source code, Material Design streamlines

collaboration between designers and developers, and helps teams quickly build beautiful products."

https://m3.material.io

A simple way to get started with Material Design is to use "Materialize", which is described as a "responsive

front-end framework based on Material Design". Essentially, Materialize provides the CSS and JS for

components that follow the Material Design guidelines.

To get started using Materialize, we can follow the same strategy as we used for Bootstrap, ie: using the

"cloudflare" CDN links directly in our HTML documents:

Bulma

9ndCyUaIbzAi2FUVXJi0CjmCapSmO7SnpJef0486qhLnuZ2cdeRhO02iuK6FUUVM"
 crossorigin="anonymous"
/>
<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"
 integrity="sha384-
geWF76RCwLtnZ8qwWowPQNguL3RmwHVBC9FhGdlKrxdiJJigb/j/68SIy3Te4Bkz"
 crossorigin="anonymous"
></script>

<link
 rel="stylesheet"
 href="https://cdnjs.cloudflare.com/ajax/libs/materialize/1.0.0/css/materialize.mi
/>
<script src="https://cdnjs.cloudflare.com/ajax/libs/materialize/1.0.0/js/materializ
</script>

https://m3.material.io/
https://materializecss.com/

Another alternative is "Bulma": It was released in 2016 and has had a number of releases - at the time of

writing, Bulma is at 0.9.4.

"Bulma is a free, open source framework that provides ready-to-use frontend components that you can

easily combine to build responsive web interfaces.

No CSS knowledge required."

https://bulma.io

You will notice that Bulma does not require any JS to run, making it more straightforward to incorporate into

existing projects. It also provides a simple "modular" approach to including "only what you need" from the

framework.

As with other frameworks on this list, the simplest way to start is to use the minified CSS, available on the

"jsdelivr" CDN:

Foundation

Finally, we should mention "Foundation" - a framework released by "Zurb" back in 2011. It has gone through

a number of major releases since then and (at the time of writing) is currently on version 6, released in 2015.

Foundation has extensive documentation and while it may be more complex then some of the other

frameworks, it has may resources such as "starter projects" and video tutorials to help new users.

Interestingly, it also has a version that is used to help design "responsive HTML emails", which can be

cumbersome and difficult.

To get started using it, the simplest way is to use the CDN links:

<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bulma@0.9.4/css/bulma.min.css" />

<link
 rel="stylesheet"
 href="https://cdn.jsdelivr.net/npm/foundation-
sites@6.7.5/dist/css/foundation.min.css"
 crossorigin="anonymous"
/>
<script
 src="https://cdn.jsdelivr.net/npm/foundation-
sites@6.7.5/dist/js/foundation.min.js"

https://bulma.io/
https://bulma.io/
https://bulma.io/documentation/overview/modular
https://www.jsdelivr.com/
https://get.foundation/
https://zurb.com/
https://get.foundation/sites/docs/starter-projects.html
https://get.foundation/emails/docs

Introduction to Sass

After exploring the documentation for the above frameworks, you will notice that all them make use of

something called "Sass":

"CSS on its own can be fun, but stylesheets are getting larger, more complex, and harder to maintain.

This is where a preprocessor can help. Sass has features that don't exist in CSS yet like nesting, mixins,

inheritance, and other nifty goodies that help you write robust, maintainable CSS."

https://sass-lang.com/guide

Sass, or "Syntactically Awesome StyleSheets" is a superset of CSS that adds power and elegance to the

basic language. It allows you to use variables, nested rules, mixins, modules, and more, all with a fully CSS-

compatible syntax. Sass helps keep large stylesheets well-organized as well as getting small stylesheets up

and running quickly. This is a natural choice for large CSS frameworks like those mentioned above.

There are two syntaxes available for Sass. The first, known as SCSS (defined using the ".scss" extension) is

an extension of the syntax of CSS while the other syntax SASS (defined using the ".sass" extension),

provides a more concise way of writing CSS. It uses indentation rather than brackets to indicate nesting of

selectors, and newlines rather than semicolons to separate properties.

Getting Started

To get started working with Sass, first create a simple web server using Express, making sure that there is at

least one route and a "public" static folder has been configured.

Once this is complete run the following command to install the "sass" command as a "devDependency" (ie: a

package that that is only needed for local development and testing.)

We require this command because Sass functions as a CSS precompiler - it adds functionality to CSS in a

layer above it and we must run a script / program to convert our Sass files into regular CSS so that the

browser can interpret it.

 crossorigin="anonymous"
></script>

npm i -D sass

https://sass-lang.com/
https://sass-lang.com/guide
http://sass-lang.com/guide#topic-2
http://sass-lang.com/guide#topic-3
http://sass-lang.com/guide#topic-6
http://sass-lang.com/guide#topic-5
https://sass-lang.com/documentation
http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs
https://www.npmjs.com/package/sass

With our command correctly installed, we should add a "scss" folder outside the "public" folder (it does not

need to be accessed by the client) and create a couple of .scss files (main.scss & _reset.scss):

Finally, to make sure our new "sass" CLI works to "watch" our .scss files for changes and correctly update a

new file: /public/css/main.css, we must add the following "scripts" property to our "package.json" file:

NOTE: From the documentation: "When compiling whole directories, Sass will ignore partial files whose

names begin with _. You can use partials to separate out your stylesheets without creating a bunch of

unnecessary output files." This is why we do not get a "_reset.css" file as a result of our build step

(below)

Notice how the "build-css" script is set to run "sass" with "scss" as the source and "public/css" as the

destination. We also use the --no-source-map and --watch flags to ensure that the command will not

generate a source map as well as "watch" our source directory for changes and automatically re-compile on

save.

To get sass running, simply execute the command:

Now, every time we make a change to any file within our /scss directory our Sass will be compiled and the

resulting CSS will be saved in the pubic css folder as main.css. We can leave this process running in the

background and not have to worry about any additional "compile" steps.

You will know when the process has completed successfully when you see the following green message in

the terminal: Compiled scss/main.scss to public/css/main.css.. Similarly, you will know that there was an

error compiling your SCSS if you see an "Error" message in the terminal.

Working with SCSS

/scss
 ↪ main.scss
 ↪ _reset.scss

"scripts": {
 "build-css": "sass --no-source-map --watch scss:public/css"
}

npm run build-css

https://web.dev/source-maps/

With our script humming along in the background waiting for changes, why don't we try out some of the great

features of our new CSS extension language?

Variables

Think of variables as a way to store information that you want to reuse throughout your stylesheet. You can

store things like colors, font stacks, or any CSS value you think you'll want to reuse. Sass uses the $ symbol

to make something a variable. Here's an example:

When the Sass is processed, it takes the variables we define for the $font-stack and $primary-color and

outputs normal CSS with our variable values placed in the CSS. This can be extremely powerful when

working with brand colors and keeping them consistent throughout the site.

Nesting

When writing HTML you've probably noticed that it has a clear nested and visual hierarchy. CSS, on the

other hand, doesn't. Sass will let you nest your CSS selectors in a way that follows the same visual hierarchy

of your HTML. Be aware that overly nested rules will result in over-qualified CSS that could prove hard to

maintain and is generally considered bad practice. With that in mind, here's an example of some typical

styles for a site's navigation:

$font-stack: Helvetica, sans-serif;
$primary-color: #333;

body {
 font: 100% $font-stack;
 color: $primary-color;
}

body {
 font: 100% Helvetica, sans-serif;
 color: #333;
}

nav {
 ul {
 margin: 0;
 padding: 0;
 list-style: none;
 }

You'll notice that the ul, li, and a selectors are nested inside the nav selector. This is a great way to organize

your CSS and make it more readable. When you generate the CSS you'll get something like this:

Import (Use)

CSS has an import option that lets you split your CSS into smaller, more maintainable portions. The only

drawback is that each time you use @import in CSS it creates another HTTP request. Sass builds on top of

the current CSS @import (as @use) but instead of requiring an HTTP request, Sass will take the file that

you want to import and combine it with the file you're importing into so you can serve a single CSS file to the

web browser.

In our Sass directory, we have two scss files: _reset.scss and main.scss. We want to import _reset.scss

into main.scss.

 li {
 display: inline-block;
 }

 a {
 display: block;
 padding: 6px 12px;
 text-decoration: none;
 }
}

nav ul {
 margin: 0;
 padding: 0;
 list-style: none;
}

nav li {
 display: inline-block;
}

nav a {
 display: block;
 padding: 6px 12px;
 text-decoration: none;
}

Notice we're using @use '_reset'; in the main.scss file. When you import a file you don't need to include the

file extension .scss. Sass is smart and will figure it out for you. When you generate the CSS you'll get:

Mixins

Mixins let you make groups of CSS declarations that you want to reuse throughout your site. You can even

pass in values to make your mixin more flexible, making it more like a function definition within your CSS.

// _reset.scss

html,
body,
ul,
ol {
 margin: 0;
 padding: 0;
}

// main.scss

@use '_reset';

body {
 font: 100% Helvetica, sans-serif;
 background-color: #efefef;
}

html,
body,
ul,
ol {
 margin: 0;
 padding: 0;
}

body {
 font: 100% Helvetica, sans-serif;
 background-color: #efefef;
}

The "Bulma" framework makes use of the following "overlay" mixin which can be used to help position

elements on the page using "absolute" positioning (ie a "modal" window):

To create a mixin you use the @mixin directive and give it a name, ie "overlay". We're also using the variable

$offset inside the parentheses so we can pass in an offset of whatever we want (using "0" as the default).

After you create your mixin, you can then use it as a CSS declaration starting with @include followed by the

name of the mixin. When your CSS is generated it'll look like this:

Extend / Inheritance

This is one of the most useful features of Sass. Using @extend lets you share a set of CSS properties from

one selector to another. It helps keep your Sass very DRY ("Don't Repeat Yourself"). In our example we're

going to create a simple series of messaging for errors, warnings and successes.

@mixin overlay($offset: 0) {
 bottom: $offset;
 left: $offset;
 position: absolute;
 right: $offset;
 top: $offset;
}

.modal {
 @include overlay(150px);
}

.modal {
 bottom: 150px;
 left: 150px;
 position: absolute;
 right: 150px;
 top: 150px;
}

.message {
 border: 1px solid #ccc;
 padding: 10px;
 color: #333;
}

.success {

What the above code does is allow you to take the CSS properties in .message and apply them to

.success, .error, & .warning. The magic happens with the generated CSS, and this helps you avoid having

to write multiple class names on HTML elements. This is what it looks like:

Operators

Doing math in your CSS is very helpful. Sass has a handful of standard math operators like +, -, *, /, and %.

For example we can do the following simple math to calculate widths for an aside & article.

 @extend .message;
 border-color: green;
}

.error {
 @extend .message;
 border-color: red;
}

.warning {
 @extend .message;
 border-color: yellow;
}

.message,

.success,

.error,

.warning {
 border: 1px solid #cccccc;
 padding: 10px;
 color: #333;
}

.success {
 border-color: green;
}

.error {
 border-color: red;
}

.warning {
 border-color: yellow;
}

In the above case, the generated CSS will look like:

.container {
 width: 100%;
}

article[role='main'] {
 float: left;
 width: calc(600px / 960px * 100%); // gets 600px as a percentage of 960px
}

aside[role='complementary'] {
 float: right;
 width: calc(300px / 960px * 100%); // gets 300px as a percentage of 960px
}

.container {
 width: 100%;
}

article[role='main'] {
 float: left;
 width: 62.5%;
}

aside[role='complementary'] {
 float: right;
 width: 31.25%;
}

On this page

Tailwind CSS & daisyUI

Tailwind CSS is another popular CSS framework that we may choose to use with our projects. It is defined

as a "utility-first CSS framework packed with classes like flex, pt-4, text-center and rotate-90 that can be

composed to build any design, directly in your markup."

"Utility classes help you work within the constraints of a system instead of littering your stylesheets with

arbitrary values. They make it easy to be consistent with color choices, spacing, typography, shadows,

and everything else that makes up a well-engineered design system."

Essentially, Tailwind CSS provides an extensive set of CSS classes that can be used together to create

specific designs by adding them to elements in your HTML (Markup), without writing any CSS. For example:

Creates a block that is 150px wide by 80px tall with a large outer shadow, a white background color and

large rounded corners. It also uses flexbox (flex) to center the items horizontally and vertically. The inner

paragraph is also aligned in the center.

This is certainly a different approach to the previous CSS frameworks that we have seen. It adds a lot of

extra markup to your "view" (".html") files and can be difficult to maintain and read. However, it does add a lot

of flexibility and consistency to the user interface design without writing any CSS code yourself.

NOTE: To reduce repeating ourselves when using Tailwind, We can use the "@apply" directive to

extract repeated utility patterns to custom CSS classes

If we are able to use this alongside some kind of "component library" that also adds expertly designed, pre-

built user interface elements (such as Bootstrap's "btn"), it would be much quicker (and cleaner) for us to

<div class="w-[150px] h-[80px] shadow-2xl bg-white rounded-lg flex justify-
center items-center">
 <p class="text-center">shadow-2xl</p>
</div>

.small-card-container {
 @apply w-[150px] h-[80px] shadow-2xl bg-white rounded-lg flex justify-
center items-center;
}

https://v3.tailwindcss.com/
https://v3.tailwindcss.com/docs/width#fixed-widths
https://v3.tailwindcss.com/docs/height
https://v3.tailwindcss.com/docs/box-shadow#adding-an-outer-shadow
https://v3.tailwindcss.com/docs/background-color
https://v3.tailwindcss.com/docs/border-radius#rounded-corners
https://v3.tailwindcss.com/docs/flex
https://v3.tailwindcss.com/docs/justify-content#center
https://v3.tailwindcss.com/docs/align-items#center
https://v3.tailwindcss.com/docs/text-align#setting-the-text-alignment
https://v3.tailwindcss.com/docs/reusing-styles#extracting-classes-with-apply

adopt in our projects. Fortunately, Tailwind has the notion of "plugins" which allow us to "register new styles

for Tailwind" (this is where daisyUI comes in).

Setting up Tailwind CSS

To begin using Tailwind, we will once again create a simple web server using Express, making sure that

there is at least one route and a "public" static folder has been configured.

Once this is complete, run the following command to install the "tailwindcss" command as a

"devDependency":

Next, we must "initialize" Tailwind and create a "tailwind.config.js" file by using the command:

NOTE: The "npx" command allows us to run a command from a local or remote npm package.

With Tailwind CSS correctly installed, we must create a primary css file as our starting point to include the

"layers" of Tailwind CSS. To do this, crate a "tailwind.css" file within "/public/css" (ie:

/public/css/tailwind.css) with the following code:

Configure Tailwind CSS

The next step is to let Tailwind know where to find our "view" (".html") files. The reason for this is because

Tailwind's "build" step (configured below) scans our "view" files and creates a custom CSS file containing

only the required CSS from Tailwind. This can be accomplished by adding ./views/**/*.html to the

"content" array within the "tailwind.config.js" file:

File: tailwind.config.js

npm install -D tailwindcss@3

npx tailwindcss init

@tailwind base;
@tailwind components;
@tailwind utilities;

https://v3.tailwindcss.com/docs/plugins
http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs
https://docs.npmjs.com/cli/commands/npx

"Build" main.css

For the next step (as we did with "SASS"), we must add a "build" command to the "scripts" section of our

package.json file:

File: package.json

To test this out, add the following import statement and HTML to one of your "view" (."html") files:

Finally, "build" the "main.css" file by executing the command in the Integrated Terminal:

Congratulations! You have crated a new main.css file with all of the required Tailwind CSS classes for your

view, including "shadow-2xl", "bg-white", etc. Now, every time you decide to update any of your "view" files or

"tailwind.css", you can re-run the npm run tw:build command to re-generate your optimized main.css

file.

module.exports = {
 content: [`./views/**/*.html`], // all .html files
 // ...
};

"scripts": {
 "tw:build": "tailwindcss build -i ./public/css/tailwind.css -o
./public/css/main.css --watch"
}

<link rel="stylesheet" href="/css/main.css" />

<div class="w-[150px] h-[80px] shadow-2xl bg-white rounded-lg flex justify-
center items-center">
 <p class="text-center">shadow-2xl</p>
</div>

npm run tw:build

NOTE: Tailwind CSS Recommends the Visual Studio Extension "Tailwind CSS IntelliSense", which has

features such as:

Autocomplete: Intelligent suggestions for class names, as well as CSS functions and directives

Linting: Highlights errors and potential bugs in both your CSS and your markup

Hover Preview: See the complete CSS for a Tailwind class name by hovering over it

Introducing daisyUI

As mentioned above, daisyUI is a "plugin" for Tailwind CSS. It adds UI components while still providing the

full flexibility of Tailwind's utility classes:

"[daisyUI is] the most popular component library for Tailwind CSS"

"daisyUI adds component class names to Tailwind CSS so you can make beautiful websites faster than

ever".

https://daisyui.com

This sounds like the perfect compromise - we get beautifully styled UI components while still having the

freedom to use the extensive set of Tailwind's utility classes to configure them and design new components.

Installing

To get started using daisyUI, the first thing that we need to do is "install" the required packages using NPM:

Once this is complete, the next step is to register them as "plugins" in the "tailwind.config.js" file:

File: tailwind.config.js

npm i @tailwindcss/typography daisyui@4

module.exports = {
 // ...
 plugins: [require('@tailwindcss/typography'), require('daisyui')],
};

https://marketplace.visualstudio.com/items?itemName=bradlc.vscode-tailwindcss
https://v4.daisyui.com/
https://daisyui.com/

NOTE: The "@tailwindcss/typography" plugin is recommended by daisyUI and is required if we wish to

see text such as headings and paragraphs correctly styled. To read more on this, including using the

"prose" class ("that you can slap on any block of vanilla HTML content and turn it into a beautiful, well-

formatted document"), see the following link to the documentation:

https://v4.daisyui.com/docs/layout-and-typography

This should be all that is required to register daisyUI with Tailwind CSS. To verify that it did indeed work, try

adding a component from daisyUI to one of your .html files using main.css. The simplest example is a button

- we'll use the "primary" variation:

To test if this worked, all that is needed is to execute another "build" of tailwind, using the previously-

configured "tw:build" command:

You should now see ".btn" and ".btn-primary" classes added to your main.css, as well as a working purple

button in your view!

Theming

Before we discuss some of the important design patterns and components available from daisyUI, let's

quickly discuss how we can modify the "theme" that is used when rendering our components:

"daisyUI comes with a number of themes, which you can use with no extra effort. Each theme defines a

set of colors which will be used on all daisyUI elements"

At it's core the various "themes" that daisyUI provides are alternate color schemes and variations on the

roundness of corners, thickness and length of shadows, etc. for the provided components. Recall from our

"btn-primary" example above: a purple button was rendered on the screen (since this is the default "primary"

color). If we were to use one of the built in themes such as "cupcake", the "primary" color would be a dark

cyan and the button would have more rounded edges.

To change the theme used by daisyUI, all that is required is that a named theme from the list of themes be

listed in a "themes" property for "daisyui" in tailwind.config.js. For example, if we wish to use the

aforementioned "cupcake" theme, we could update our tailwind.config.js files as follows:

<button class="btn btn-primary">Button</button>

npm run tw:build

https://v4.daisyui.com/docs/layout-and-typography/#-1
https://v4.daisyui.com/docs/layout-and-typography
https://v4.daisyui.com/components/button
https://v4.daisyui.com/docs/themes
https://v4.daisyui.com/docs/themes/

File: tailwind.config.js

Components

At the time of writing, DaisyUI ships with a total of 52 Components. The library is extremely extensive and

the documentation is both very well written and searchable. If you plan on working with Tailwind CSS,

daisyUI is an excellent addition that can greatly speed up your development time and make your apps look

professional without having to do any additional design work.

The following is a list of a few key components that are used in most web applications, along with the (.html)

code to include them in your views. For additional components and patterns, refer to the official

documentation.

NOTE: Do not forget to "build" your Tailwind CSS before testing newly added components / HTML to

see the results.

Navbar

The first component that we will discuss is the "Navbar". The navbar (short for "navigation bar") provides a

consistent, user friendly and widely recognized way to navigate through a web site / app. To begin using

daisyUI's implementation, add the following HTML:

module.exports = {
 // ...
 daisyui: {
 themes: ['cupcake'],
 },
};

<div class="navbar bg-base-100">
 <div class="flex-1">
 daisyUI
 </div>

 <div class="navbar-center flex">
 <ul class="menu menu-horizontal px-1">
 <a>Link

 <details>
 <summary>Parent</summary>
 <ul class="p-2 bg-base-100 right-0">

https://v4.daisyui.com/docs
https://v4.daisyui.com/docs
https://v4.daisyui.com/components/navbar

This is a very simple navigation bar using boilerplate code from the documentation. It shows a "daisyUI" logo

/ link on the left hand side and two navigation links (including a "dropdown" menu). To add new items, we

simply modify the unordered list. Features such as "Search Input" and "Icons with indicators" are also

supported.

The only issue here is that the menu is not "responsive" (ie: it does not collapse to accommodate smaller

devices). To remedy this, we should make the navbar only visible if the viewport is a certain width or larger. If

the viewport is smaller than the breakpoint (minimum width), then an alternate navbar should be shown,

featuring an icon indicating that the user can click to view the menu items.

To modify the above boilerplate code to make it responsive, we must first change:

to:

Next, add the "responsive" version of the navigation bar above the recently-modified "navbar-center" <div>...

</div>, making sure to include the same links / menu items:

 <a>Link 1
 <a>Link 2

 </details>

 </div>
</div>

<div class="navbar-center flex"></div>

<div class="navbar-center hidden sm:flex"></div>

<div class="dropdown">
 <label tabindex="0" class="btn btn-ghost sm:hidden">
 <svg xmlns="http://www.w3.org/2000/svg" class="w-6 h-6" fill="none"
viewBox="0 0 24 24" stroke="currentColor"><path stroke-linecap="round" stroke-
linejoin="round" stroke-width="2" d="M4 6h16M4 12h16m-7 6h7" /></svg>
 </label>
 <ul tabindex="0" class="menu menu-sm dropdown-content right-0 mt-3 z-[1] p-2
shadow bg-base-100 rounded-box w-52">
 <a>Link

https://v4.daisyui.com/components/navbar/#navbar-with-search-input-and-dropdown
https://v4.daisyui.com/components/navbar/#navbar-with-icon-indicator-and-dropdown

This should provide a navigation bar that appears normal if the viewport is larger than the "sm" size (640px),

and compressed (ie: converted to a drop-down menu with an appropriate icon) when the viewport is smaller.

NOTE: There is currently an issue where dropdowns do not close when clicking away on some mobile

devices (iPhone / IOS) - see: "Dropdown not closing when clicking outside on mobile #824". At the time

of writing, the fix involves setting a negative tabindex on the <body> element, ie: <body

tabIndex="-1">

Grid System

Another important feature of any design system is it's "grid" implementation. A grid system will let us place

elements on the page that are spaced consistently and are resized / rearranged to accommodate multiple

device sizes (ie: "responsive"). Interestingly, daisyUI does not provide it's own grid system, instead relying on

Tailwind's excellent implementation.

To get started using the grid system, we will crate a responsive grid that consists of 4 columns for the large

size, 2 columns for the medium size, and 1 column for the small size.

 <details>
 <summary>
 Parent
 </summary>
 <ul class="p-2 bg-base-100">
 <a>Link 1
 <a>Link 2

 </details>

</div>

<div class="container mx-auto">
 <div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-4 gap-4">
 <div class="border-2">01</div>
 <div class="border-2">02</div>
 <div class="border-2">03</div>
 <div class="border-2">04</div>
 <div class="border-2">05</div>
 </div>
</div>

https://github.com/saadeghi/daisyui/issues/824
https://v3.tailwindcss.com/docs/grid-template-columns
https://v3.tailwindcss.com/docs/grid-template-columns#specifying-the-columns-in-a-grid

You will notice that the grid is also placed within a responsive "container", which ensures that the grid is

given a correct width depending on the viewport size.

NOTE: You can specify more that one grid in a container. For example, if you wished to have a large,

single column grid above the other items (serving as a title block, etc), you could update the code to

use:

Cards

A "Card" is basically a user interface element that serves as a "content container" for a specific item to be

presented to the user (ie: a product from a store, or service offered, etc). Cards typically include elements

such as an image, title, description, call to action, and often incorporate subheadings or icons.

"A card UI design is an entire interface based largely or exclusively on presenting the user content on

cards. The logic behind this is to avoid long texts and render content more scannable. Even though

users might not be familiar with the concept of a card from a design point of view – they instantly know

how to use UI cards."

https://www.justinmind.com/ui-design/cards

Fortunately, daisyUI has a card component that is ready to be incorporated into our designs:

<div class="container mx-auto">
 <div class="grid grid-cols-1 mb-4">
 <div class="border-2">Title</div>
 </div>
 <div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-4 gap-4">
 <div class="border-2">01</div>
 <div class="border-2">02</div>
 <div class="border-2">03</div>
 <div class="border-2">04</div>
 <div class="border-2">05</div>
 </div>
</div>

<div class="card w-96 bg-base-100 shadow-xl">
 <figure>
 <img class="w-full" src="https://placehold.co/375x375?text=[+SHOES+]"
alt="Shoes" />
 </figure>
 <div class="card-body">
 <h2 class="card-title">Shoes!</h2>

https://v3.tailwindcss.com/docs/container
https://www.justinmind.com/ui-design/cards
https://v4.daisyui.com/components/card

NOTE: If you wish to position the card as a "grid" item, the "w-96" class can be removed and the entire

"card" can be placed within the grid

For other options, such as "responsive", "glass", "custom colors", etc. please refer to the documentation.

Tables

If your content is more "tabular" (ie: displayed using tables / columns), such as sports scores, results from an

experiment, sales reports, etc. then it's best placed with a styled "table" element.

To achieve this using daisyUI, the documentation recommends placing your table within a <div> element

with class overflow-x-auto . Additionally, the <table> element itself should have the class table :

For other options, such as "striped rows", "visual elements", "compact tables", etc. please refer to the

documentation.

Forms

Finally, we should discuss how form elements are styled using Tailwind CSS / daisyUI. Generally, form

controls are styled using a class that matches their type - for example, to style an <input> element the

class "input" would be used. Similarly, to style a <select> element the "select" class would be used. This

pattern extends to whether or not we wish to style the control with a border (ie, using the styles "input-

bordered" and "select-bordered").

The below HTML snippet captures the major form types: "input", "textarea", "select", "radio" and "checkbox"

within a responsive grid that is 3 columns wide.

 <p>If a dog chews shoes whose shoes does he choose?</p>
 <div class="card-actions justify-end">
 <button class="btn btn-primary">Buy Now</button>
 </div>
 </div>
</div>

<div class="overflow-x-auto">
 <table class="table">
 <!-- ... -->
 </table>
</div>

https://v4.daisyui.com/components/card/#responsive-card-vertical-on-small-screen-horizontal-on-large-screen
https://v4.daisyui.com/components/card/#card-glass
https://v4.daisyui.com/components/card/#card-with-custom-color
https://www.justinmind.com/ui-design/cards
https://v4.daisyui.com/components/table/
https://v4.daisyui.com/components/table/#zebra
https://v4.daisyui.com/components/table/#table-with-visual-elements
https://v4.daisyui.com/components/table/#table-xs
https://v4.daisyui.com/components/table
https://v4.daisyui.com/components/input/
https://v4.daisyui.com/components/textarea/
https://v4.daisyui.com/components/select/
https://v4.daisyui.com/components/radio/
https://v4.daisyui.com/components/checkbox/

<form>
 <div class="container mx-auto">
 <div class="grid grid-cols-1 md:grid-cols-3 gap-4">
 <div>
 <label class="label">Name</label>
 <input
 class="input input-bordered w-full"
 type="text"
 id="name"
 name="name"
 placeholder="Enter your name"
 />
 </div>
 <div>
 <label class="label">Message</label>
 <textarea
 class="textarea textarea-bordered w-full"
 id="message"
 name="message"
 placeholder="Enter your message"
 ></textarea>
 </div>
 <div>
 <label class="label">Fast Food</label>
 <select class="select select-bordered w-full">
 <option disabled selected>Fast Food</option>
 <option>Pizza</option>
 <option>Hamburger</option>
 </select>
 </div>
 <div>
 <label class="label cursor-pointer justify-normal">
 <input type="radio" name="pets" class="radio" /> <span class="label-
text px-2">Dogs
 </label>
 <label class="label cursor-pointer justify-normal">
 <input type="radio" name="pets" class="radio" checked />
 Cats
 </label>
 </div>
 <div>
 <label class="label cursor-pointer justify-normal">
 <input type="checkbox" name="active" class="checkbox" />
 Active
 </label>

 </div>
 </div>
 </div>
</form>

Example Code

You may download the sample code for this topic here:

UI-Toolkits

https://github.com/WPTF-Examples/UI-Toolkits

On this page

Application, Request &

Response Objects

Express.js makes it very straightforward to get a web server running on a given port and responding to

simple "get" requests (ie: GET / HTTP/1.1):

From the above code, it is clear that there are three important objects that are used to configure the server:

app , req and res . Let's discuss these objects in detail and how we can use them to handle more

complicated scenarios, such as route / query parameters, cookies and custom errors.

The Application object

The "app" object in the example above represents the express main application object. It contains several

methods for tasks, such as processing route requests, setting up middleware, and managing html views or

view engines.

In the above example, we set a route on the host to handle HTTP GET requests to “/”. This means any

"GET" requests to localhost:8080/ will be sent to this function. A typical route handler in express (like the one

above) is created by invoking a function on the app object using the HTTP method (verb) that matches the

type of request and passing it two parameters: a string representing the route, and a callback function to

invoke when the route is matched. In this case, we wish to handle GET requests for the default route "/"

(typically requests from the browser to load the page initially).

const express = require('express');
const app = express();

const HTTP_PORT = process.env.PORT || 8080;

app.get('/', (req, res) => {
 res.send('Hello World');
});

app.listen(HTTP_PORT, () => console.log(`server listening on: ${HTTP_PORT}`));

https://expressjs.com/en/api.html#app

Here are some of the commonly used application properties and methods that we will use throughout these

notes.

app.all()

This method is used to register a single callback for a route that matches any HTTP Method IE: GET, PUT,

POST, DELETE, etc.

HTTP Verb Methods

We can also respond to a request a callback for a route using a single HTTP Method (ie: app.get() from

our Simple Web Server using Express.js example):

app.locals

The "locals" property allows you to attach local variables to the application, which persist throughout the life

of the app. You can access local variables in templates rendered within the application (discussed in

app.all('/http-testing', (req, res) => {
 res.send('test complete');
});

app.get('/get-test', (req, res) => {
 res.send('GET Test Complete');
});

app.put('/put-test', (req, res) => {
 res.send('PUT Test Complete');
});

app.post('/post-test', (req, res) => {
 res.send('POST Test Complete');
});

app.delete('/delete-test', (req, res) => {
 res.send('DELETE Test Complete');
});

// etc.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs#simple-get-routes

"Template Engines").

app.listen()

As we have seen, this function is used to start the HTTP server listening for connections on a specific port,

ie:

app.set()

The "set" method assigns a value to a specific "setting". According to the documentation, you may store any

value that you want in your own custom "setting", however certain settings can be used to configure the

behavior of the server. For example, we will be setting the value of the "view engine" setting when

configuring our template engine.

app.use()

The use method is used to add middleware to your application. Middleware consists of functions (typically

placed before the route handlers) that automatically execute either when a specified path is matched or

globally before every request. This is very useful when you want to do something with every request like add

properties to the request object or check if a user is logged in.

This is discussed further in the next section: "Middleware"

The Request object

The "req" object represents the object that contains all the information and metadata for the request sent to

the server. When you see examples of the request object in use, it will typically be referred to as ‘req’ (short

app.locals.title = 'My App';

const HTTP_PORT = process.env.PORT || 8080;

// (route handlers / middleware) ...

app.listen(HTTP_PORT, () => {
 console.log('server listening on: ' + HTTP_PORT);
});

http://localhost:3000/Template-Engines/introduction
https://expressjs.com/en/5x/api.html#app.settings.table
http://localhost:3000/Advanced-Routing-Middleware/middleware
https://expressjs.com/en/api.html#req

for request object).

Some of the commonly used request properties and methods used throughout these notes are:

req.body

The req.body property contains the data submitted as part of request. It requires that you use a "body

parsing" middleware (discussed in: "Middleware") which will attach data (properties) to req.body. If you post

data in your request, this is how you access that data.

req.cookies

If we wish to read the value specific "cookie" value, ie:

"a small piece of data that a server sends to a user's web browser. The browser may store the cookie

and send it back to the same server with later requests."

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

we can reference it using the corresponding property on the "req.cookies" object:

However, like "req.body" above, we must use a ("cookie parsing") middleware function to populate

"req.cookies" with data from the cookie

req.params

The "params" property is used when we wish to read the values of "Route Parameters" defined in our route

handlers:

"Route parameters are named URL segments used to capture values at specific positions in the URL.

The named segments are prefixed with a colon and then the name (E.g., /:your_parameter_name/)."

app.post('/urlencoded-test', (req, res) => {
 res.send(req.body);
});

// Cookie: name=tj
console.log(req.cookies.name); // "tj"

http://localhost:3000/Advanced-Routing-Middleware/middleware
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes#route_parameters

For example, if we wish to match all GET requests for the route "/employee/employeeNum", where

employeeNum can be any value, ie: "123", "abc456", etc, we can use the following code:

req.query

The "query" property is needed when we wish to read the values of the "query string" in the url:

A query string is a part of a uniform resource locator (URL) that assigns values to specified parameters.

A query string commonly includes fields added to a base URL by a Web browser or other client

application, for example as part of an HTML document, choosing the appearance of a page, or jumping

to positions in multimedia content

A typical URL containing a query string is as follows: https://example.com/over/there?

name=ferret

https://en.wikipedia.org/wiki/Query_string

For example, if we wanted to match a GET request for the route "/products" that also supports the optional

query string value "onSale", ie: "/products?onSale=true", we could use the code:

When designing route handlers that can accept query string values, we do not include them in the "route" (ie:

"/products"). Additionally, since the route will match without the "onSale" query sting value, it is important to

app.get('/employee/:employeeNum', (req, res) => {
 res.send(`Employee Number: ${req.params.employeeNum}`);
});

app.get('/products', (req, res) => {
 let result = 'all Products';

 // NOTE: query parameter values are always strings

 if (req.query.onSale == 'true') {
 result += ' (on sale)';
 }

 res.send(result);
});

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes#route_parameters
https://en.wikipedia.org/wiki/Query_string

return a value if it's missing (ie: "all Products" or an error if the query parameter must be present)

NOTE: Multiple query parameters may also be used, and are separated by an ampersand, "&":

https://example.com/path/to/page?name=ferret&color=purple

req.get()

req.get() is necessary for checking the values of specific HTTP headers sent with the request. For example:

Here, when a user requests the "/hello" route, they should see the text "Hello" followed by the content of the

"user-agent" header sent with the request.

The Response object

The "res" object represents the object that contains all the information and metadata for a response sent

from the server. When you see examples of the response object in use it will typically be referred to as ‘res’

(short for response object). The data you send back from the server can be one of several different formats -

the most common of which are HTML, JSON, CSS, JS and plain files (.pdf, .txt, .jpg, .png, etc).

Some of the commonly used response properties and methods used throughout these notes are:

res.cookie()

This allows you to send a cookie with the response, specified using a name = value key pair. You can set the

value to a string / object using JSON notation and it will be included in the "Set-Cookie" header of the

response. For example:

res.set()

app.get('/hello', (req, res) => {
 res.send(`Hello ${req.get('user-agent')}`);
});

app.get('/cookie-test', (req, res) => {
 res.cookie('message', 'Hello World!');
 res.send('Cookie Sent!');
});

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://expressjs.com/en/api.html#res

res.set() enables you to set the values of specific / custom HTTP headers sent with the request. For

example:

res.end()

res.end() is used you want to end a response immediately and send nothing back. For example, we may

wish to send a "204 - No Content" status code, which indicates that "a request has succeeded, but that the

client doesn't need to navigate away from its current page". For example:

res.redirect()

The res.redirect() method is used to perform a redirect to another page on your site, go back to the previous

page, or redirect to another domain. For example:

res.send()

This is the primary response method to send a response to the client. You can send a String, Object, Array,

or even a Buffer object back to the client. The send() method will automatically set the Content-Type header

for you based on the type of data sent. For example:

app.get('/custom', (req, res) => {
 res.set('Custom-Header', 'MyValue');
 res.send(`Custom-Header Sent`);
});

app.put('/update', (req, res) => {
 // ... (update logic)
 res.status(204).end();
});

app.get('/to-google', (req, res) => {
 res.redirect('https://www.google.ca/');
});

app.get('/json-test', (req, res) => {
 res.send({ message: 'Hello World!' }); // Content-Type: application/json;
charset=utf-8

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/204

NOTE: When sending a JavaScript object back (as in the example above), the "send()" method will

internally convert it to a JSON-formatted string

res.sendFile()

As we have seen, this function is used when we wish to send a file (typically .html) back to the client. We use

path.join() to safely join __dirname with the path of the file to be sent. This function also correctly sets the

Content-Type response HTTP header based on the file extension. For example:

res.status()

res.status() is used to set a specific status code for the response (as seen above in the res.end() example).

This will be useful when handling client / server errors and setting 4xx / 5xx series error codes. More detail is

discussed in the following "Middleware" section.

});

app.get('/plain-text-test', (req, res) => {
 res.send('Hello World!'); // Content-Type: text/html; charset=utf-8
});

app.get('/', (req, res) => {
 res.sendFile(path.join(__dirname, '/views/home.html'));
});

https://nodejs.org/api/path.html#pathjoinpaths
https://nodejs.org/docs/latest/api/modules.html#__dirname
http://localhost:3000/Advanced-Routing-Middleware/application-request-response-objects#resend
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#client_error_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#server_error_responses
http://localhost:3000/Advanced-Routing-Middleware/middleware

On this page

Middleware

Middleware in Express refers to functions that can execute in the ‘middle’ of a request/response cycle

typically before a matching route handler function is executed.

Middleware functions are functions that have access to the request object (req), the response object

(res), and the next() function in the application’s request-response cycle. The next() function is a

function in the Express router which, when invoked, executes the middleware succeeding the current

middleware.

http://expressjs.com/en/guide/writing-middleware.html

By implementing middleware, we can perform tasks such as:

Directly modify the "req" (request) or "res" (response) objects before processing the route (ie:

app.get('/', (req, res) => { ... });)

Redirect the user or respond to requests before other routes are processed

Block clients from accessing specific routes

Log requests / handle logic before processing routes

Respond to requests for routes that do not exist (ie: generate "404" errors)

Handle exceptions that occur during the processing of a route handler (ie: generate "500" series errors)

Getting Started

To implement middleware in our servers, we will begin by writing a simple middleware function that logs

every request to the console. This function will be placed before any of our route handlers, ensuring that it

gets executed for every request:

app.use((req, res, next) => {
 console.log(`Request from: ${req.get('user-agent')} [${new Date()}]`);
 next();
});

http://expressjs.com/en/guide/writing-middleware.html

Notice how we make use of the aforementioned app.use() method to implement our middleware function. It

looks very similar to a regular route handler, except it accepts a third parameter: next and (in this case) does

not return anything to the client. It is because this function does not return anything to the client (ie: generate

a "response"), that we must use the "next()" function - it simply calls the next middleware function, such as a

route handler, ie:

NOTE: If we fail to invoke the next() function or return a response, our server will hang and the client

request will timeout.

Updating "req"

Let's continue the example by updating the "req" object in our middleware example to include a "log"

property that simply stores the output of the log entry as a string. We can use this value in a subsequent

route handler and send it back to the client, ie:

Restricting Route Access

Another common use for middleware is to restrict route access for a specific route. This can be be

accomplished by placing your middleware function as a parameter to the route handling function that

requires restricted access. For example:

app.get('/', (req, res) => {
 res.send('Hello World');
});

app.use((req, res, next) => {
 let loggedItem = `Request from: ${req.get('user-agent')} [${new Date()}]`;
 console.log(loggedItem);
 req.log = loggedItem;
 next();
});

app.get('/', (req, res) => {
 res.send(`Hello - ${req.log}`);
});

function randomDeny(req, res, next) {
 let allowed = Math.floor(Math.random() * 2); // 0 or 1

https://expressjs.com/en/api.html#app.use

Here, we have implemented our middleware function as "randomDeny", which randomly generates either a 0

or 1. If a 1 is generated, the "next()" function is invoked, allowing the route to be processed as normal.

However, if a 0 is generated, a response, including the 403 - Forbidden error code is generated, informing

the user that they do not have access (we could also redirect them to a "login" or "register" page, etc).

To ensure that this middleware function only affects the "/secure" route, we place it as the second parameter

before the callback function.

404 Errors

As a final example of how to implement middleware in our server.js code - let's create a custom "404" error

to send to the client if it has requested an unknown route (ie: a route that we have not created a handler for):

Here, we have created a middleware function using the familiar "use()" function. However, the main

difference is where it is placed, ie: below all of our other middleware functions / route handlers. By placing it

in this way, we can ensure that it only gets executed if none of the other route handlers return a response to

the client.

Types of Middleware

 if (allowed) {
 next();
 } else {
 res.status(403).send('Access Denied');
 }
}

app.get('/secure', randomDeny, (req, res) => {
 res.send('Welcome!');
});

// Other route handlers, middleware, etc ...

app.use((req, res, next) => {
 res.status(404).send("404 - We're unable to find what you're looking for.");
});

// app.listen()

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/403

Now that we have seen how middleware is typically implemented within an Express application, let's quickly

review the 5 types of middleware available:

Application-Level Middleware

Application-level middleware is bound to your entire application and can run when every request comes in or

only when it matches a specified route.

In the examples above, we have implemented "Application-level middleware".

Router-Level Middleware

Router-level middleware works the same way as application middleware but is attached to a separate router

instance. Essentially, instead of "app.use()", a separate express.Router() instance is created and the

middleware is applied to it, ie:

For more information on express.Router(), see the official documentation in the official Express Routing

documentation.

Error-Handling Middleware

Error-handling middleware is defined with 4 parameters in the callback function, ie: (err, req, res, next). We

must specify all 4 parameters so that express can differentiate it from a regular middleware function. Error

handling middleware is invoked either when a regular middleware function calls next(err) instead of next(), or

when exceptions occur in your route handlers. Like our "404" example above, error handling middleware

should be placed below your route handlers. For example:

const userRouter = express.Router();

userRouter.use((req, res, next) => {
 console.log('userRouter Middleware!');
 next();
});

app.get('/error-test', (req, res) => {
 throw new Error('Error Test');
});

app.use((err, req, res, next) => {

http://expressjs.com/en/guide/using-middleware.html#middleware.application
http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://expressjs.com/en/guide/routing.html
http://expressjs.com/en/guide/using-middleware.html#middleware.error-handling

Built-In Middleware

There are three types of built-in middleware functions available for us to use:

express.static()

This is what we used when sending "static" files (ie: "css" files, images, etc) in the "CSS & Images" section

of the "Simple Web Server using Express.js" notes, ie:

express.json()

This is used to parse "JSON" formatted payloads, and make the result available on the "req" object. For

example:

express.urlencoded()

This is nearly identical to "express.json", except this is used to parse data from a web form using the default

"enctype", (ie: "application/x-www-form-urlencoded").

NOTE: The “extended” option utilizes the "qs" library which enables rich objects and arrays to be

encoded into the URL-encoded format, allowing for a JSON-like experience with URL-encoded. For

more information, please see the qs library.

 res.status(500).send(`500 - ${err.message}`);
});

app.use(express.static('public'));

app.use(express.json());

app.post('/json-test', (req, res) => {
 res.send(req.body);
});

app.use(express.urlencoded({ extended: true }));

app.post('/urlencoded-test', (req, res) => {
 res.send(req.body);
});

http://expressjs.com/en/guide/using-middleware.html#middleware.built-in
http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs#css--images
https://www.npmjs.org/package/qs#readme

Third-Party Middleware

Since Express 4.x, previously included middleware that did common things such as handle cookies, or

handle file uploads, have been moved to individual third-party middleware packages.

For example, parsing cookies requires the installation of cookie-parser:

For a list of supported, third party middleware, refer to the official documentation.

$ npm install cookie-parser

const cookieParser = require('cookie-parser');

// load the cookie-parsing middleware
app.use(cookieParser());

https://expressjs.com/en/guide/using-middleware.html#middleware.third-party
https://expressjs.com/en/resources/middleware/cookie-parser.html
http://expressjs.com/en/resources/middleware.html

Example Code

You may download the sample code for this topic here:

Advanced-Routing-Middleware

https://github.com/WPTF-Examples/Advanced-Routing-Middleware

On this page

JavaScript Object Notation

(JSON)

JSON ("JavaScript Object Notation") is a plain-text format that easily converts to a JavaScript object in

memory. Essentially, JSON is a way to define an object using "Object Literal" notation, outside your

application. Using the native JavaScript built-in JSON Object, we can preform the conversion from plain-text

(JSON) to JavaScript Object (and vice-versa) easily. For example:

Converting JSON to an Object

Converting an Object to JSON

let myJSONStr = '{"users":[{"userId":1,"fName":"Joe","lName":"Smith"},
{"userId":2,"fName":"Jeffrey","lName":"Sherman"},
{"userId":3,"fName":"Shantell","lName":"McLeod"}]}';

// Convert to An Object:
let myObj = JSON.parse(myJSONStr);

// Access the 3rd user (Shantell McLeod)
console.log(myObj.users[2].fName); // Shantell

let myObj = {
 users: [
 { userId: 1, fName: 'Joe', lName: 'Smith' },
 { userId: 2, fName: 'Jeffrey', lName: 'Sherman' },
 { userId: 3, fName: 'Shantell', lName: 'McLeod' },
],
};

let myJSON = JSON.stringify(myObj);

console.log(myJSON); // Outputs: '{"users":

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/JSON

Caveats When Using JSON

The JSON format works exceptionally well to "serialize" (convert an object in memory to a byte / string

representation) and "deserialize" (converting back to an object in memory). However, there are certain things

that cannot be encoded to JavaScript Object Notation:

Object Instances

Instances of objects in memory cannot be stored in a JSON format. For example, consider the following

"product" object:

Since the "added" property is an instance of the Date object, we can invoke methods such as

"toLocalStimeString()":

However, if we convert the product to JSON and back, we lose this ability:

[{"userId":1,"fName":"Joe","lName":"Smith"},
{"userId":2,"fName":"Jeffrey","lName":"Sherman"},
{"userId":3,"fName":"Shantell","lName":"McLeod"}]}'

let product = {
 name: 'Pencil',
 price: 3.95,
 added: new Date('December 17, 1995 03:24:00'),
};

console.log(product.added.toLocaleTimeString('fr-CA')); // 03 h 24 min 00 s

// convert to JSON
let productJSON = JSON.stringify(product);

// restore (convert to object)
let productFromJSON = JSON.parse(productJSON);

console.log(productFromJSON.added.toLocaleTimeString('fr-CA')); // TypeError:
productFromJSON.added.toLocaleTimeString is not a function

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

This issue occurs because during the conversion to JSON, the Date object was implicitly converted to a

string:

Functions (Methods)

Functions ("methods") that exist on the object also will not convert to JSON. For example:

Once again, if we attempt to convert this object to JSON and back, we lose the "increase()" function:

In this case, this issue occurs because during the conversion to JSON, the "increase" function was not

included:

{
 "name": "Pencil",
 "price": 3.95,
 "added": "1995-12-17T08:24:00.000Z"
}

let counter = {
 current: 0,
 increase: function () {
 this.current++;
 },
};

console.log(counter.current); // 0
counter.increase();
console.log(counter.current); // 1

// convert to JSON
let counterJSON = JSON.stringify(counter);

// restore (convert to object)
let counterFromJSON = JSON.parse(counterJSON);

console.log(counterFromJSON.current); // 0
counterFromJSON.increase(); // TypeError: counterFromJSON.increase is not a
function

NOTE: For more information on how values are "stringified", refer to the MDN documentation on

"JSON.stringify()"

{ "current": 0 }

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify#description

On this page

AJAX Review

AJAX (Asynchronous JavaScript and XML) can be described as a collection of technologies used

together to create a richer user experience by enabling data to be transferred between a web client (browser)

and web server without the need to refresh the page:

Ajax, is not a technology in itself, but rather an approach to using a number of existing technologies

together, including HTML or XHTML, CSS, JavaScript, DOM, XML, XSLT, and most importantly the

XMLHttpRequest object. When these technologies are combined in the Ajax model, web applications

are able to make quick, incremental updates to the user interface without reloading the entire browser

page. This makes the application faster and more responsive to user actions. Ajax's most appealing

characteristic is its "asynchronous" nature, which means it can communicate with the server, exchange

data, and update the page without having to refresh the page.

Although X in Ajax stands for XML, JSON is preferred because it is lighter in size and is written in

JavaScript. Both JSON and XML are used for packaging information in the Ajax model.

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX

AJAX Introduction: The Fetch API

In modern browsers, we can use the "Fetch API" to make AJAX requests. Essentially, we can configure a

new Request by providing two parameters:

The location of the resource

A set of "options", (defined using "object literal" notation)

The "location" parameter is simply the URI of the resource, ie: "https://jsonplaceholder.typicode.com/users/",

while the "options" parameter could contain any number of options, including:

The http method, ie: 'POST'

The 'body' of the request, ie: 'JSON.stringify({user:"John Doe", job:"unknown"})'

An object consisting of a number of headers, ie: '{"Content-Type": "application/json"}'

And Many Others

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://jsonplaceholder.typicode.com/users/
https://developer.mozilla.org/en-US/docs/Web/API/Request#Properties

In practice, this would look something like this:

Once the request is configured, we can "Fetch" the data using "fetch()" with our request. This "fetch" method

will return a promise that resolves with a "response" object that has a number of methods, including:

response.text() - which we can use to read the 'response' stream. This method returns a promise that

will resolve with text.

response.json() - which we can use to read the 'response' stream. This method returns a promise that

will resolve with an object.

To execute the request defined above (ie: myRequest), we can wire up the "fetch" using the following code

(assuming that our resource is returning JSON-formatted data).

AJAX: The Fetch API (Compressed)

To save lines and make your code more readable and concise, the above two pieces of code can be

combined, ie:

let myRequest = new Request('https://jsonplaceholder.typicode.com/users/', {
 method: 'POST',
 body: JSON.stringify({ username: 'jDoe', name: 'John Doe' }),
 headers: {
 'Content-Type': 'application/json',
 },
});

fetch(myRequest)
 .then((response) => {
 return response.json();
 })
 .then((json) => {
 console.log(json); // here is the parsed JSON response
 });

fetch('https://jsonplaceholder.typicode.com/users/', {
 method: 'POST',
 body: JSON.stringify({ username: 'jDoe', name: 'John Doe' }),
 headers: { 'Content-Type': 'application/json' },
})
 .then((response) => response.json())

https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response#static_methods

NOTE: Our code is even shorter if we're simply doing a "GET" request, ie:

Handling Responses with an "Error" Status

If we wish to handle a situation where the fetch fails, we can always add a catch statement at the end of the

above code. However, it is important to note that if the response itself was successful (ie a connnection was

made and a response was returned), then the "catch" callback code will not be executed even if the

response status code indicates an error, ie 500 or 404. To handle these situations, we can leverage a

method on the response object callded "ok" (see: response.ok) which will be true if the status code of the

response was in the 200 range. Practically speaking, it can be used like this:

 .then((json) => {
 console.log(json);
 });

fetch('https://jsonplaceholder.typicode.com/users/')
 .then((response) => response.json())
 .then((json) => {
 console.log(json);
 });

fetch('https://jsonplaceholder.typicode.com/unknown')
 .then((response) => {
 // return a rejected promise with the status code of the response if it
wasn't "ok"
 return response.ok ? response.json() : Promise.reject(response.status);
 })
 .then((json) => {
 console.log(json);
 })
 .catch((err) => {
 console.log(err);
 });

https://developer.mozilla.org/en-US/docs/Web/API/Response/ok

On this page

API Introduction &

Implementation

You may have heard of the term REST or RESTful API when reading about Web Programming. For our

purposes, this can be described as way to use the HTTP protocol (ie, "GET", "POST", "PUT", "DELETE",

etc.) with a standard message format (ie, JSON or XML) to preform CRUD operations (Create, Read,

Update, Delete) on a data source.

NOTE: To truly create a fully compliant REST API we must conform to the standards outlined in Roy

Fielding's PhD dissertation, Architectural Styles and the Design of Network-based Software

Architectures. The design pattern that we are using here could more appropriately be called a "Web

API".

What makes this architecture so valuable, is that we remove any assumptions about how a client will access

the data. A client could make HTTP requests to the API from a website, mobile app, etc. and it would be the

website or app's job to correctly render the data once it's received. This simplifies development of front-end

applications that use the data and even removes any specific programming language requirements for the

client. If it can handle HTTP requests / responses and JSON, it can use our data.

Route Configuration

Before we think about getting any kind of persistent storage involved however, let's first see how we can

configure all of our routes in our server to allow for CRUD operations on a simple collection of users in the

format

Route HTTP Method Description

/api/users GET Get all the users

/api/users POST Create a user

{userId: number, fName: string, lName: string}

https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Route HTTP Method Description

/api/users/:userId GET Get a single user

/api/users/:userId PUT Update a user with new information

/api/users/:userId DELETE Delete a user

When these routes are applied to our Express server code, we get something that looks like this:

Here, we have made use of the request object's params method to identify the specific user that needs to be

fetched, updated or deleted based on the URL alone. In a sense, what we're allowing here is for the URL +

const express = require('express');
const app = express();

const HTTP_PORT = process.env.PORT || 8080;

app.get('/api/users', (req, res) => {
 res.send({ message: 'fetch all users' });
});

app.post('/api/users', (req, res) => {
 res.send({ message: 'add a user' });
});

app.get('/api/users/:userId', (req, res) => {
 res.send({ message: `get user with Id: ${req.params.userId}` });
});

app.put('/api/users/:userId', (req, res) => {
 res.send({ message: `update User with Id: ${req.params.userId}` });
});

app.delete('/api/users/:userId', (req, res) => {
 res.send({ message: `delete User with Id: ${req.params.userId}` });
});

// setup http server to listen on HTTP_PORT
app.listen(HTTP_PORT, () => {
 console.log(`Express http server listening on: ${HTTP_PORT}`);
});

https://expressjs.com/en/api.html#req
https://expressjs.com/en/api.html#req.params

HTTP Method to act as a way of querying the data source, as /api/users/3, /api/users/4923 or even

/api/users/twelve will all be accepted. They may not necessarily return valid data, but the routes will be

found by our server and we can attempt to preform the requested operation.

AJAX Testing (View)

Now that we have all of the routes for our API in place, let's create a "view" that will make AJAX requests to

test our API functionality. To begin, create a views folder and add the file index.html. This will be a simple

HTML page consisting of 5 buttons (each corresponding to a piece of functionality in our API) and some

simple JavaScript to make an AJAX request.

However, since we are serving this file from the same server that our API is on, we will need to add some

additional code to our server file; specifically:

and

Finally - our server is setup and ready to serve the index.html file at our main route ("/"). Our next step is to

add our client-side logic / JS to the index.html file. Here, we hard-code some requests to the API and output

their results to the web console to make sure they function correctly:

const path = require('path');

app.get('/', (req, res) => {
 res.sendFile(path.join(__dirname, '/views/index.html'));
});

<!doctype html>
<html>
 <head>
 <title>API Test</title>
 <script>
 function makeAJAXRequest(method, url, body) {
 fetch(url, {
 method: method,
 body: JSON.stringify(body), // if missing 'body', 'undefined'
is returned
 headers: { 'Content-Type': 'application/json' }
 })
 .then(response => response.json())

Adding Data (JSON)

Once you have entered the above code, save the changes and try running the server locally - you will see

that All of the routes tested return a JSON formatted message. This confirms that our Web API will correctly

respond to AJAX requests made by the client. Additionally, If you open the Network tab (Google Chrome)

before initiating one of the calls to Update or Add a New User, you will see that our request is also carrying

a payload of information, ie:

If we wish to capture this information in our routes (so that we can make the appropriate updates to our data

source), we must make some small modifications to our server.js file and individual routes (ie: POST to

"/api/users" & PUT to "/api/users/:userId"). The first thing that we must do is incorporate middleware to parse

the incoming data, ie:

 .then(json => {
 console.log(json);
 });
 }
 </script>
 </head>
 <body>
 <p>Test the API by outputting to the browser console:</p>
 <!-- Get All Users -->
 <button type="button" onclick='makeAJAXRequest("GET", "/api/users")'>Get
All Users</button>

 <!-- Add New User -->
 <button type="button" onclick='makeAJAXRequest("POST", "/api/users",
{fName: "Bob", lName: "Jones"})'>Add New User</button>

 <!-- Get User By Id -->
 <button type="button" onclick='makeAJAXRequest("GET", "/api/users/2")'>Get
User</button>

 <!-- Update User By Id -->
 <button type="button" onclick='makeAJAXRequest("PUT", "/api/users/2",
{fName: "Wanda", lName: "Smith"})'>Update User</button>

 <!-- Delete User By Id -->
 <button type="button" onclick='makeAJAXRequest("DELETE",
"/api/users/2")'>Delete User</button>
 </body>
</html>

This should allow our routes to access data passed to our API using the req.body property. More specifically,

we can update our POST & PUT routes to use req.body to fetch the new / updated fName and lName

properties:

and

If we try running the server to test the API again, we will see that the messages returned back from the

server correctly echo the data sent to the API. We now have everything that we need to preform simple

CRUD operations via AJAX on a data source using a web service. The only thing missing is the data store

itself.

NOTE: If we want to allow the API to respond to requests from outside the domain (this is what

https://jsonplaceholder.typicode.com does), we will have to enable Cross-Origin Resource Sharing

(CORS) - see the third-party CORS middleware

app.use(express.json());

app.post('/api/users', (req, res) => {
 res.send({ message: `add the user: ${req.body.fName} ${req.body.lName}` });
});

app.put('/api/users/:userId', (req, res) => {
 res.send({ message: `update User with Id: ${req.params.userId} to
${req.body.fName} ${req.body.lName}` });
});

https://expressjs.com/en/api.html#req.body
https://jsonplaceholder.typicode.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://www.npmjs.com/package/cors

Example Code

You may download the sample code for this topic here:

Web-API-Overview

https://github.com/WPTF-Examples/Web-API-Overview

On this page

Introduction

Express.js is a powerful library for helping us create web servers in Node.js. In very few lines of code we can

send / receive data in a way that is very straightforward and easy to understand. Recall our first example,

where we were able to create two routes: "/" and "/about", each corresponding to a specific response from

our server:

In the above example, we make use of the get method of the app object to define a route and a callback

function that's executed when the route is encountered. We can leverage the 2nd parameter "res" to send

either an HTML formatted string (for route "/"), or a static html page (for route "/about").

If we wanted to send (JSON formatted) data only, we can use the following route (/getData):

const express = require('express');
const app = express();
const path = require('path');

const HTTP_PORT = process.env.PORT || 8080;

app.get('/', (req, res) => {
 res.send("Hello World
Go to the about page");
});

app.get('/about', (req, res) => {
 res.sendFile(path.join(__dirname, '/views/about.html'));
});

app.listen(HTTP_PORT, () => {
 console.log(`server listening on: ${HTTP_PORT}`);
});

app.get('/getData', function (req, res) {
 let someData = {
 name: 'John',
 age: 23,
 occupation: 'developer',
 company: 'Scotiabank',

This will return the JSON-formatted string:

The important thing to notice here is that our server can return HTML formatted strings, static HTML (.html)

files, and JSON data.

Returning HTML & Data

If we want to return a valid HTML5 page to the client that actually references data stored on the server, one

solution would be to build a string that contains both HTML code and data, ie:

 };

 res.send(someData);
});

{ "name": "John", "age": 23, "occupation": "developer", "company": "Scotiabank"
}

app.get('/viewData', function (req, res) {
 let someData = {
 name: 'John',
 age: 23,
 occupation: 'developer',
 company: 'Scotiabank',
 };

 let htmlString = `<!doctype html>
 <html>
 <head>
 <title>View Data</title>
 </head>
 <body>
 <table border='1'>
 <tr>
 <th>Name</th>
 <th>Age</th>
 <th>Occupation</th>
 <th>Company</th>
 </tr>
 <tr>
 <td>${someData.name}</td>

While this will work to send a valid HTML5 page containing our data back to the client, it's clearly not the

best way to approach this problem. What if we had a complex page that contains data in different places

throughout the layout? We would be building out an enormous string containing normal, static html and in a

few places, inserting a reference to our data (someData object). Wouldn't it be better if we could just write a

normal HTML document that references the data, instead of having to build one huge string for the whole

page?

Template Engines

Fortunately, we can leverage "template engines" with Express to solve this exact problem. From the

express.js documentation:

A template engine enables you to use static template files in your application. At runtime, the template

engine replaces variables in a template file with actual values, and transforms the template into an

HTML file sent to the client. This approach makes it easier to design an HTML page.

This sounds like exactly what we need and there are a number of popular options that we can choose from,

such as:

"Pug"

"Express Handlebars"

"EJS"

In the next section, we will take a look at "EJS":

A simple templating language that lets you generate HTML markup with plain JavaScript. No

religiousness about how to organize things. No reinvention of iteration and control-flow. It's just plain

JavaScript.

 <td>${someData.age}</td>
 <td>${someData.occupation}</td>
 <td>${someData.company}</td>
 </tr>
 </table>
 </body>
 </html>`;

 res.send(htmlString);
});

https://expressjs.com/en/guide/using-template-engines.html
https://pugjs.org/api/getting-started.html
https://www.npmjs.com/package/express-handlebars
https://ejs.co/

On this page

EJS (Embedded JavaScript

Templates)

EJS is described as "a simple templating language that lets you generate HTML markup with plain

JavaScript. No religiousness about how to organize things. No reinvention of iteration and control-flow. It's

just plain JavaScript."

It contains features that will help us generate HTML that renders complex data. For example, consider the

problem with our “/viewData” route from the introduction; we can leverage the EJS template engine to write a

simple (separate) HTML5 document that references the data using special delimiters, ie: <%= and %> ,

rather than returning a long, complex string from our route handler.

Getting Started

To begin, create the following file in your “views” directory and name it “viewData.ejs”:

<!DOCTYPE html>
<html>
 <head>
 <title>View Data</title>
 </head>

 <body>
 <table border="1">
 <tr>
 <th>Name</th>
 <th>Age</th>
 <th>Occupation</th>
 <th>Company</th>
 </tr>
 <tr>
 <td><%= data.name %></td>
 <td><%= data.age %></td>
 <td><%= data.occupation %></td>
 <td><%= data.company %></td>

https://ejs.co/
http://localhost:3000/Template-Engines/introduction

This is a much cleaner approach. We no longer have to generate the full page as a string within our

“/viewData” route and most importantly, all of the view logic (HTML) is separate from our control logic

(routing).

In order to set this up correctly and get express to understand the file above, we need to modify our server

code slightly:

1. The first thing that we need to do is download / install the EJS package using NPM. Open a terminal in

Visual Studio Code (ctrl + ` or View -> Integrated Terminal) and make sure that your working directory is

somewhere within your project and run the command

This will install the "ejs" package in the same way that we installed the "express" package and update

the dependencies in our package.json file:

2. Next, our server needs to know how to handle HTML files that are formatted using ejs, so near the top of

our code (after we define our "app"), add the line:

This will tell our server that any file with the ".ejs" extension (instead of ".html") will use the EJS "engine"

(template engine).

3. The final step involves updating our "/viewData" route to "render" our EJS file with the data:

 </tr>
 </table>
 </body>
</html>

npm install ejs

"dependencies": {
 "ejs": ...,
 "express": ..."
}

app.set('view engine', 'ejs');

app.get('/viewData', function (req, res) {
 let someData = {

Now, the route no longer returns a string consisting of our HTML + data using res.send(), but instead invokes

the render method on the response object (res). We pass the name of our new file without the extension (ie:

"viewData" instead of "viewData.ejs"), and a "data" object to hold all of our data (someData).

EJS Syntax

Before we begin to discuss the more advanced features of EJS, we must first become familiar with the

syntax. For example, we have seen that <%= ... %> is used to render a specific value within our template.

However, we should understand that this delimiter ("tag"), also escapes any HTML contained in the value (ie:

"
" will be rendered as "
" so that it appears as text, instead of a new line).

The <%= ... %> is not the only delimiter available to us. EJS also provides a number of opening and

closing delimiters ("tags") that control how a value is rendered within the template.

Delimiters (Tags)

<%= ... %> (HTML Escaped)

As we have seen, this tag outputs the value into the template (HTML escaped). For example:

will be rendered as:
 , when using the tag:

<%- ... %> (Unescaped)

This tag works exactly as the above <%= tag, except the value is not HTML escaped.For example:
 will be rendered as:
 , when using the tag:

 name: 'John',
 age: 23,
 occupation: 'developer',
 company: 'Scotiabank',
 };

 res.render('viewData', {
 data: someData,
 });
});

<%= someValue %>

http://expressjs.com/en/api.html#res.render
http://expressjs.com/en/api.html#res

<%# ... %> (Comment)

This tag is used when we wish add a comment to our templates that will not be output in the final

HTML, ie:

<% ... %> (Scriptlet)

This is the tag that will enable us to insert logic into our templates (discussed further down). For

example, if our "data" object contained an array of colors, ie: ['red','green','blue] , we could use

the following "scriptlet" tags to render the contents using a "forEach" loop:

NOTE: Delimiters that output a value (ie "HTML escaped" / "unescaped") are also capable of executing

JavaScript expressions. For example, if "someValue" is a string, we could use the following code:

<%= someValue.toUpperCase() %>

Includes / "Partials"

When using EJS, it is also possible to place reusable blocks of our user interface in separate files, such as a

common header or an in-page modal window / dialog box. To achieve this, EJS uses an "include" function

that may be used in one of the output tags (ie: "HTML escaped" or "unescaped", however since these

included .ejs files typically use HTML, the "unescaped" delimiter is more commonly used).

To see how this works in practice, we will create a "partials" folder within the "views" folder (this will help us

separate the reusable templates, from the "page" templates)

Next, (within the "partials" folder) create a file called "header.ejs":

<%- someValue %>

<%# This is a comment that will not be rendered %>

<% data.colors.forEach((color) => { %>
 <%= color %>
<% }) %>

<h1>EJS Practice - <%= page %></h1>
<hr />

Notice how our partial template includes a block of reusable HTML as well as an "HTML escaped" tag to

render a variable called "page". To render this template inside another template, we can use the

aforementioned "include" function:

File: viewData.ejs

Here, we have used the "unescaped" delimiter to ensure that the HTML within the "partial" is correctly

rendered. Additionally, the second parameter contains an object that we an pass to our partial (in this case,

the value of the "page" variable)

NOTE: Partial views have access to the data in the template in which they are placed. For example, if

the "header" partial (above) was placed in the viewData template, it would have access to the "data"

object and could render "data.name", for example

Logic

Using the "Scriptlet" delimiter (ie: <% ... %>), we can easily insert JavaScript code into our templates. This

is one of the key benefits of using EJS:

"We love JavaScript. It's a totally friendly language. All templating languages grow to be Turing-

complete. Just cut out the middle-man, and use JS!

https://ejs.co

if / else

To conditionally render portions of our template (HTML), we can use a simple if / else statement. To get this

to work correctly, each "line" of JavaScript code should be placed inside a scriptlet delimiter. For example,

say we wish to conditionally show our developer "John":

Home | About | View
Data
<hr />

<%- include('partials/header', {page: '/viewData'}) %>

https://ejs.co/

Notice, we have added a "visible" property that we can reference before we render "someData" in our view.

Using a simple if / else statement, we can easily hide or show rows in the table:

File: viewData.ejs

Iterating over Collections

In addition to conditionally rendering portions of our templates, we may also need to display the content of an

array / collection. This may be done using the usual constructs, ie "for", "for...of", "while", "forEach()", etc. For

example, if our someData object contained an array of objects:

let someData = {
 name: 'John',
 age: 23,
 occupation: 'developer',
 company: 'Scotiabank',
 visible: true,
};

<% if (data.visible) { %>
 <tr>
 <td><%= data.name %></td>
 <td><%= data.age %></td>
 <td><%= data.occupation %></td>
 <td><%= data.company %></td>
 </tr>
<% } else { %>
 <tr>
 <td colspan="4">User: '<%= data.name %>' has hidden their information</td>
 </tr>
<% } %>

let someData = [
 {
 name: 'John',
 age: 23,
 occupation: 'developer',
 company: 'Scotiabank',
 },
 {
 name: 'Sarah',

we could use the "forEach()" method to display each object in our table:

File: viewData.ejs

Please note that we are not limited to the forEach() loop when iterating over data. As mentioned above, we

could also use another construct, such as the "for...of" loop:

"Nesting" Logic

The "scriptlet" tag is extremely powerful - it let's us inject JavaScript into our views to control how our data is

displayed. In the above examples, we have only used single pieces of logic at a time (ie: "if/else", "forEach()",

etc), but it is also possible that this logic may be "nested".

For example, maybe each of our "users" in the "someData" array has a "visible" property as well. We would

like to render each of the elements in the array, but also hide a user if their visible property is set to false

 age: 32,
 occupation: 'manager',
 company: 'TD',
 },
];

<% data.forEach(user=>{ %>
 <tr>
 <td><%= user.name %></td>
 <td><%= user.age %></td>
 <td><%= user.occupation %></td>
 <td><%= user.company %></td>
 </tr>
<% }) %>

<% for (const user of data){ %>
 <tr>
 <td><%= user.name %></td>
 <td><%= user.age %></td>
 <td><%= user.occupation %></td>
 <td><%= user.company %></td>
 </tr>
<% } %>

File: viewData.ejs

Layouts

EJS does not natively support "layouts". Typically, the structure of an application using EJS as its template

engine will feature a common "header, "footer", "sidebar", etc with every page, ie:

let someData = [
 {
 name: 'John',
 age: 23,
 occupation: 'developer',
 company: 'Scotiabank',
 visibility: false,
 },
 {
 name: 'Sarah',
 age: 32,
 occupation: 'manager',
 company: 'TD',
 visibility: true,
 },
];

<% for (const user of data){ %>
 <% if(user.visible){ %>
 <tr>
 <td><%= user.name %></td>
 <td><%= user.age %></td>
 <td><%= user.occupation %></td>
 <td><%= user.company %></td>
 </tr>
 <% }else{ %>
 <tr>
 <td colspan="4">User: '<%= user.name %>' has hidden their information</td>
 </tr>
 <% } %>
<% } %>

If you wish to customize the 'header' or 'footer' based on the current page, data can be sent to each of the

partials separately. For example, one common task is for a navigation bar within the 'header' to highlight the

link for the current page. For example, if the user is currently viewing the "/about" route, then "About" should

be highlighted:

File: header.ejs

To achieve this, we can pass the current route to the partial view. Currently, we are passing this value as

"page":

File: viewData.ejs

Therefore, we can leverage the "unescaped" tag to conditionally highlight each of the options using the

"ternary" operator, by checking the "href" attribute against the "page" value:

<body>
 <%- include('header') %>

 <%# Page Content / Data Here %>

 <%- include('footer') %>
</body>

<h1>EJS Practice - <%= page %></h1>
<hr />
Home | About | View Data
<hr />

<%- include('partials/header', {page: '/viewData'}) %>

<h1>EJS Practice - <%= page %></h1>
<hr />
 <%- (page=="/") ? 'Home' : 'Home' %> |
 <%- (page=="/about") ? 'About' : 'About' %>
 |
 <%- (page=="/viewData") ? 'View Data' :
'View Data' %>

NOTE: If you wish to use EJS with full layout support, consider the NPM package: express-ejs-layouts

<hr />

https://www.npmjs.com/package/express-ejs-layouts

Example Code

You may download the sample code for this topic here:

Template-Engines

https://github.com/WPTF-Examples/Template-Engines

On this page

HTML Form Elements Review

Before we begin to implement form submission logic in our server code, let's first do a quick review of the

main form elements, including:

Form

The form element serves as the primary container for housing your form, including user inputs and the

submit button. It has several attributes that control its behavior, with the most common ones being 'enctype',

'method', and 'action'.

The enctype is the encoding type. If you are working with forms that have file uploads that accompany the

form data, this value should be set to: multipart/form-data , otherwise the default is application/x-

www-form-urlencoded . The 'method' specifies which HTTP verb to use when making the submission

request (ie: "GET: or "POST"). Finally, the 'action' attribute is the URL / route that the form will send the

request to once it has been submitted.

NOTE: in the above example, "enctype" may be omitted since "application/x-www-form-urlencoded" is

the default value for "enctype"

Input

The input element creates a single-line text box by default (ie: the default value for the 'type' attribute is

text):

<form method="post" enctype="application/x-www-form-urlencoded"
action="https://httpbin.org/post">
 <!-- ... -->
</form>

<input type="text" name="fullName" />

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

NOTE: We must ensure that every form control includes a "name" field, which will be used to identify

the form value, when submitted.

There are also a multitude of additional interactive input 'types' that may be used, such as:

color: Elements of type="color" provide a user interface element that lets a user specify a color, either

by using a visual color picker interface or by entering the color into a text field in #rrggbb hexadecimal

format.

date: Elements of type="date" create input fields that let the user enter a date, either with a textbox that

validates the input or a special date picker interface.

time: Elements of type="time" create input fields designed to let the user easily enter a time (hours and

minutes, and optionally seconds).

email: Elements of type="email" are used to let the user enter and edit an email address, or, if the

multiple attribute is specified, a list of email addresses.

number: Elements of type="number" are used to let the user enter a number. They include built-in

validation to reject non-numerical entries.

range: Elements of type="range" let the user specify a numeric value which must be no less than a

given value, and no more than another given value. The precise value, however, is not considered

important. This is typically represented using a slider or dial control rather than a text entry box like the

number input type.

file: Elements of type="file" let the user choose one or more files from their device storage. Once

chosen, the files can be uploaded to a server using form submission, or manipulated using JavaScript

code and the File API.

Textarea

The textarea element is much like an <input type='text'> input, except it allows multiple lines of text.

Essentially, it is a text box that has space to add a larger quantity of text, instead of just a single line of text.

The textarea is useful for capturing user input that would typically be long and detailed or several sentences

long.

<textarea name="blogEntry"></textarea>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#input_types
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/time
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/range
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

Select

The select element serves as a "dropdown list" of option elements for users to choose from. Used without

any attributes, it behaves exactly like a dropdown list and only permits the user to select 1 (one) "option".

With the addition of the "multiple" attribute, we can allow the user to select more than one option. We can

also specify a "size" attribute, to show more than a single option at a time - this will work for both <select>

and <select multiple> elements. When submitted, the value is the text in the "value" attribute for the

selected option. When multiple options are selected, an array of "value" attributes are submitted, ie:

["car", "bus"] .

Checkbox

The checkbox is actually another "type" of input element. These are rendered as boxes that when clicked,

become marked as "checked" and are rendered with a check mark. When submitted, the values are either

"on" (for checked), or undefined if left unchecked.

Radio Button

The radio button is similar to "checkbox" in that it is also a "type" of input. However, radio buttons are used

when you wish to present a list of options for the user. When grouped together by using the same "name"

<select name="pet">
 <option value="">-- Please choose an option --</option>
 <option value="dog">Dog</option>
 <option value="cat">Cat</option>
 <option value="hamster">Hamster</option>
 <option value="parrot">Parrot</option>
</select>

<select multiple name="transportation">
 <option value="car">Car</option>
 <option value="motorcycle">Motorcycle</option>
 <option value="bus">Bus</option>
 <option value="jet">Private Jet</option>
</select>

<input type="checkbox" name="active" /> Active

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/select
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/option
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/multiple
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/size
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/checkbox
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/radio

attribute, they are "mutually-exclusive" (ie: checking one radio button in the group, will automatically deselect

the previously checked radio button). When submitted, the value sent is the text in the "value" attribute for

the checked radio button.

Label

The label element is used to provide a label for a form control. You can use the label's 'for' attribute to make

the label clickable to focus its associated input (identified by a unique "id"). Alternatively, you can wrap the

label text and form control inside a parent "label" element. This adds a nice touch of usability to forms and

can make it easier to focus on / interact with areas associated with a label.

Hidden

The hidden input type is used to include data that cannot be seen or modified by users when a form is

submitted. For example, "the ID of the content that is currently being ordered or edited, or a unique security

token".

Submit

Every form element should contain a "submit" button that will start the process of submitting the form. This

typically includes generating an HTTP request using the method identified in the "method" attribute, and

sending it to the destination in the "action" attribute. The encoding of the data in the request is controlled by

the "enctype" attribute.

<input type="radio" name="fastFood" value="hamburger" /> Hamburger

<input type="radio" name="fastFood" value="pizza" /> Pizza

<input type="radio" name="fastFood" value="sandwich" /> Sandwich

<label for="fullName">Full Name</label>

<input type="text" name="fullName" id="fullName" />

<label><input type="checkbox" name="active" /> Active</label>

<input type="hidden" name="productID" value="193774" />

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/hidden

A submit button can be created by either using a input element with type="submit" or a button with

type="submit" .

<input type="submit" value="Submit" />
<!-- or -->
<button type="submit">Submit</button>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/submit
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button

On this page

Processing URL Encoded Form

Data

Once we have completed the HTML to correctly render our <form> element, we can concentrate on

handling the form submission within our server logic.

Let's begin by first creating a Simple Web Server using Express.js that returns a valid HTML document for

the "/" route. Somewhere in the <body> of this document, create a simple form using controls from our HTML

Form Elements Review, for example:

<form method="post" action="/addEntry">
 Full Name

 <input type="text" name="fullName" />

 Blog Entry

 <textarea name="blogEntry"></textarea>

 Pet

 <select name="pet">
 <option value="">-- Please choose an option --</option>
 <option value="dog">Dog</option>
 <option value="cat">Cat</option>
 <option value="hamster">Hamster</option>
 <option value="parrot">Parrot</option></select
 >

 Transportation

 <select multiple name="transportation">
 <option value="car">Car</option>
 <option value="motorcycle">Motorcycle</option>
 <option value="bus">Bus</option>
 <option value="jet">Private Jet</option></select
 >

 Fast Food

 <label><input type="radio" name="fastFood" value="hamburger" /> Hamburger
</label>

 <label><input type="radio" name="fastFood" value="pizza" /> Pizza </label><br

http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs
http://localhost:3000/Working-With-Forms/html-form-elements-review

Notice how the form element has omitted the "enctype" attribute on the "form" element, as well as updated

the action to "/addEntry" (instead of "https://httpbin.org/post"). This is because we will be using

the default enctype ("application/x-www-form-urlencoded") and we wish to process the form on our own

server, instead of using "httpbin".

Body Parsing Middleware

As mentioned in the Middleware / Built-In Middleware discussion, we require some "preprocessing" on the

"req" object, before we can access the form data in our routes. For example, if we were to submit the form

now, the data sent would look something like this:

While it does contain the data from the form, it is very difficult to work with and requires manual parsing of

the string. Instead, we would prefer an object in memory:

This is where "Middleware" comes in, ie: perform some processing on the HTTP Request "body" data,

before sending it to our route handlers in the "req" object.

/>
 <label><input type="radio" name="fastFood" value="sandwich" /> Sandwich
</label>

 <label><input type="checkbox" name="active" /> Active </label>

 <input type="hidden" name="productID" value="193774" />

 <button type="submit">Submit</button>
</form>

fullName=John+Smith&blogEntry=Cool+Blog&pet=cat&transportation=car&transportation=b

{
 fullName: "John Smith",
 blogEntry: "Cool Blog",
 pet: "cat",
 transportation: ["car", "bus"],
 fastFood: "pizza",
 active: "on",
 productID: "193774"
}

http://localhost:3000/Advanced-Routing-Middleware/middleware
http://localhost:3000/Advanced-Routing-Middleware/middleware#built-in-middleware

To achieve this, we can use the built-in middleware: express.urlencoded():

Writing The Route Handler

In the example above, the form "action" attribute is set to "/addEntry". If the form were to be submitted now,

Express would return a "404" error with a response containing the text "Cannot POST /addEntry".

To remedy this, create a "POST" route for "/addEntry":

once the "/addEntry" route is in place (beneath our "express.urlencoded()" middleware), we can try

submitting the form again. This time, we should see the form data rendered as JSON in the browser.

Special Consideration ("checkbox")

As previously mentioned in the "checkbox" section of the "HTML Form Elements Review", checkboxes

submit the string "on" when checked and undefined when unchecked. Instead, we would prefer that the

value be true or false. As a simple fix for this, we can add the following code:

Here, we see if the "active" value is truthy (ie: not false, 0, -0, 0n, "", null, undefined, or NaN) and if it is, set it

explicitly to "true". If the value is "falsy" (ie: undefined), then set it explicitly to "false".

app.use(express.urlencoded({ extended: true }));

app.post('/addEntry', (req, res) => {
 res.send(req.body);
});

req.body.active = req.body.active ? true : false;

app.post('/addEntry', (req, res) => {
 req.body.active = req.body.active ? true : false;
 res.send(req.body);
});

http://localhost:3000/Advanced-Routing-Middleware/middleware#expressurlencoded
http://localhost:3000/Working-With-Forms/html-form-elements-review#checkbox
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

On this page

Processing Multipart Form Data

If an HTML <form> element requires file uploads as well as regular form data, then we can no longer use

the default "enctype" value application/x-www-form-urlencoded . Instead, we must use the

aforementioned multipart/form-data . For example, consider the following form using input type="file"

as well as a simple text input:

In the above code, we have modified the "action" to submit to a new route "/uploadEntry" as well as modified

the enctype to use "multipart/form-data".

Processing the Data with Middleware

Recall, when working with url-encoded data, we had to use "Middleware" (specifically the built-in

middleware: express.urlencoded()) to process the data and deliver it in a format that we can process. This is

also the case for "multipart/form-data", however there are no available built-in middleware functions that we

can use. Instead, we will use the popular third-party middleware: "Multer"

Multer is a node.js middleware for handling multipart/form-data, which is primarily used for uploading

files. It is written on top of busboy for maximum efficiency.

<form method="post" action="/uploadEntry" enctype="multipart/form-data">
 <label>
 File Description

 <input type="text" name="fileDescription" />
 </label>

 <label>
 Avatar Image

 <input type="file" name="avatar" />
 </label>

 <button type="submit">Upload Image</button>
</form>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
http://localhost:3000/Advanced-Routing-Middleware/middleware
http://localhost:3000/Advanced-Routing-Middleware/middleware#expressurlencoded
https://www.npmjs.com/package/multer
https://github.com/mscdex/busboy

NOTE: Multer will not process any form which is not multipart (multipart/form-data).

To get started using Multer, we will need to install it:

Next, we must require the module and configure the middleware, ie:

Default (Simple) configuration

To begin, we will use the default configuration for Multer. All that is required is a "dest" property that defines

where the files will go once uploaded. In this case, we will use the folder "uploads/":

Writing The Route Handler

With our middleware in place, we can now write our route handler for the route defined in our "action"

attribute: "/uploadEntry". When using Multer, we not only have access to the "req.body" property to get the

data submitted in the form, but also a "req.file" property to get information about the uploaded file:

Notice how we apply the middleware on the specific route, rather than using "app.use()". Additionally, since

we're uploading a single image, we invoke the "single" method, passing the "name" attribute for our <input

type="file"> (ie: "avatar").

If we try submitting the form again, we should see a result in the browser with both the form and file upload

information (ie: "req.body" & "req.file").

While this does indeed work and the file is uploaded to the correct destination (the "uploads" folder, as

specified), we do not have any control over how the file is named. Additionally, we lose the file extension

npm install multer

const multer = require('multer');

const upload = multer({ dest: 'uploads/' });

app.post('/uploadEntry', upload.single('avatar'), (req, res) => {
 res.send({ body: req.body, file: req.file });
});

associated with the file. To gain more control over the file upload, we will need to perform some additional

configuration.

Additional Configuration (diskStorage)

In order to customize the filename of the upload, we will need to use the "diskStorage" option when we

configure our "upload" middleware. Here, instead of creating "upload" using multer({ dest: 'uploads/'

}); , we will use the following "diskStorage" configuration:

Here, we specify the filename to be a current date, using "Date.now()", ie:

The number of milliseconds elapsed since the epoch, which is defined as the midnight at the beginning

of January 1, 1970, UTC.

We also retain the current extension using path.extname() from the "path" module: const path =

require("path");

Ephemeral / Read-Only File Systems

As a final note, it's important to consider that many cloud-based hosting providers either have an

"ephemeral" file system (ie: data is not persisted across deploys and restarts) or the file system is read-only.

In this case, if we wish to persist file uploads, we could use a library like "streamifier" to create a readable

stream of the file data, rather than store it. We could then pass the data to a free service like "Cloudinary" to

host the file.

For more information, see the Cloudinary documentation on Uploading assets / Upload data stream

const storage = multer.diskStorage({
 destination: 'uploads/',
 filename: function (req, file, cb) {
 cb(null, Date.now() + path.extname(file.originalname));
 },
});

const upload = multer({ storage: storage });

http://expressjs.com/en/resources/middleware/multer.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://nodejs.org/docs/latest/api/path.html#pathextnamepath
https://www.npmjs.com/package/streamifier
https://cloudinary.com/
https://cloudinary.com/documentation/upload_images
https://cloudinary.com/documentation/upload_images#upload_data_stream

Example Code

You may download the sample code for this topic here:

Working-With-Forms

https://github.com/WPTF-Examples/Working-With-Forms

On this page

Introduction to Postgres

"Data Persistence" (the ability to "persist" or "save" new, updated or deleted information) is a vital part of any

web application project. For example, this could be registering new users, deleting users, updating profile

information or payment data for users, viewing saved files or uploaded images, etc. etc. To truly create an

"application" we must be able to work with (and persist) data.

Fortunately, there are many different database systems that we can leverage to accomplish this notion of

"data persistence". These range from powerful "relational" database systems, including: Microsoft SQL

Server, Oracle, MySQL, PostgreSQL, and many others as well as "NoSQL" database systems such as

Amazon's DynamoDB, Azure Cosmos DB and MongoDB.

We will be focusing specifically on PostgreSQL and MongoDB - today, we will look at how we can work with

a PostgreSQL database in a node.js environment.

PostgreSQL (Postgres)

From the PostgreSQL site, postgresql.org:

"PostgreSQL (also known as "Postgres") is a powerful, open source object-relational database system.

It has more than 15 years of active development and a proven architecture that has earned it a strong

reputation for reliability, data integrity, and correctness. It runs on all major operating systems, including

Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, macOS, Solaris, Tru64), and Windows. It is fully ACID

compliant, has full support for foreign keys, joins, views, triggers, and stored procedures (in multiple

languages). It includes most SQL:2008 data types, including INTEGER, NUMERIC, BOOLEAN, CHAR,

VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also supports storage of binary large objects,

including pictures, sounds, or video. It has native programming interfaces for C/C++, Java, .Net, Perl,

Python, Ruby, Tcl, ODBC, among others, and exceptional documentation.

This is a great choice for us for multiple reasons; it is open source, highly available, standards compliant and

most importantly, works nicely with node.js.

To get started, proceed to https://neon.tech and click on the "Log in" link at the top and log in with your

GitHub account. Once you're logged in, follow the below steps to set up the database:

https://www.microsoft.com/en-us/sql-server/
https://www.oracle.com/database/
https://www.mysql.com/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/List_of_relational_database_management_systems
https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.mongodb.com/
https://www.postgresql.org/
https://www.mongodb.com/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/ACID
https://www.postgresql.org/docs/manuals/
https://neon.tech/

1. in the "Get started with Neon for Free" page, enter a value for project Name, ie: Seneca and Database

Name, ie: SenecaDB (We can add more databases later)

2. Leave "region" as the default value and Click the Create Project Button.

3. At the next screen, you should see a dropdown with "Connection String" selected. Click this and choose

Parameters only.

4. Next, click the eye icon to reveal your password (NOTE Also consider checking the "Pooled connection"

checkbox if this app will be deployed in a serverless environment, such as Vercel)

5. Copy the PGHOST, PGDATABASE, PGUSER and PGPASSWORD values

pgAdmin

Now that we have our brand new Postgres database created in Neon.tech, why don't we try to connect to it

using the most popular GUI tool for Postgres; pgAdmin. If you're following along from the lab room, it should

already be installed. However, if you're configuring your home machine, you will need to download pgAdmin:

https://www.pgadmin.org/download/

Once it is installed and you have opened the app, we need to configure it to connect to our database:

1. Right Click on the "Servers" icon in the left pane (Under "Browser") and select Create > Server

2. This will open the "Create - Server" Dialog window. Proceed to enter the following information about

your Postgres Database on Neon.tech.

Field Value

Name This can be anything you like, ie "Test Connection"

(Connection Tab) Host
This is the server for your Neon.tech Postgres DB ("PGHOST" value),

ie: ab-cd-12345.us-east-2.aws.neon.tech

(Connection Tab) Port
This is the port for your Neon.tech Postgres DB - it should be the same

as what's already there, ie: 5432

https://www.pgadmin.org/
https://www.pgadmin.org/download/

Field Value

(Connection Tab)

Maintenance database
Enter your "PGDATABASE" value here

(Connection Tab)

Username
Enter your "PGUSER" value here

(Connection Tab)

Password
Enter your "PGPASSWORD" value here

Once you have entered all of your information, hit the "Save" button and click "Servers" in the left pane

to expand your server connections. If you entered valid information for the above fields, you should see

your Neon.tech Postgres DB Connection. Expand this item and the following "Databases (2)" item, and

you should see your database. Expand this item, as well as the nested "Schemas (1)" item, followed by

the "public" item, and you should be presented with something that looks like this:

Success! We will be keeping an eye on our data using this tool, so it is wise to have it running during

development.

On this page

Sequelize ORM with Postgres

Sequelize is an "ORM" tool, which stands for "Object-Relational Mapper". Using an Object-Relational

Mapper enables us to interact with a relational database using object-oriented programming techniques,

which abstracts away the need to write specific SQL statements. Instead, we work with regular JavaScript to

interact with the data using familiar object-oriented & asynchronous programming techniques.

Using an ORM has two benefits:

You can replace the underlying database without necessarily needing to change the code that uses

it. This allows developers to optimize for the characteristics of different databases based on their

usage.

Basic validation of data can be implemented within the framework. This makes it easier and safer to

check that data is stored in the correct type of database field, has the correct format (e.g. an email

address), and isn't malicious in any way (hackers can use certain patterns of code to do bad things

such as deleting database records).

MDN: Abstract and simplify database access

Getting Started

Fortunately, "Sequelize" is packaged as a module on NPM (see: "sequelize"). Therefore to get started, we

will need to "install" it as a dependency within our project. With your application folder open in Visual Studio

Code, open the integrated terminal and enter the command

This will add both the sequelize and the pg / pg-hstore modules to our node_modules folder, as well as add

their names & version numbers to our package.json file under "dependencies".

Next, we need to update our server.js file to use the new modules so that we can test our connection to the

database. If you're working with an existing application, comment out any existing Express app code (routes,

listen, etc.) that you have in server.js (for the time being) and add the following code:

npm install sequelize pg pg-hstore

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks#abstract_and_simplify_database_access
https://www.npmjs.com/package/sequelize

Where database is your "PGDATABASE" value, user is your "PGUSER" value, password is your

"PGPASSWORD" and lastly, host will be your "PGHOST" url (ie: "ab-cd-12345.us-east-2.aws.neon.tech").

Once you have updated your app to use the Sequelize module, try running it using our usual "node

server.js" command. If everything was entered correctly, you should see the following message in the

console:

Finally, If you see any other errors at this point, go back and check that you have entered all of your

credentials correctly when creating the sequelize object. Recall: You can use ctrl + c to stop a node.js

application from running.

Models (Tables) Introduction

Now that we have successfully tested the connection to our Postgres database from our node.js application,

we must discuss what the Sequelize module does and how we will be using it to manage data persistence

const Sequelize = require('sequelize');

// set up sequelize to point to our postgres database
const sequelize = new Sequelize('database', 'user', 'password', {
 host: 'host',
 dialect: 'postgres',
 port: 5432,
 dialectOptions: {
 ssl: { rejectUnauthorized: false },
 },
});

sequelize
 .authenticate()
 .then(() => {
 console.log('Connection has been established successfully.');
 })
 .catch((err) => {
 console.log('Unable to connect to the database:', err);
 });

Executing (default): SELECT 1+1 AS result
Connection has been established successfully.

within our Postgres Database.

As we know, sequelize is technically an Object-Relational Mapping ("ORM") framework. It maps our

JavaScript objects ("models") to tables and rows within our database and will automatically execute relevant

SQL commands on the database whenever data using our "models" (JavaScript objects) is updated. This

saves us the trouble of manually writing complex SQL statements whenever we wish to update the back-end

database to reflect changes made by the user.

To see this in action, update your server.js file to use the following code:

const Sequelize = require('sequelize');

// set up sequelize to point to our postgres database
const sequelize = new Sequelize('database', 'user', 'password', {
 host: 'host',
 dialect: 'postgres',
 port: 5432,
 dialectOptions: {
 ssl: { rejectUnauthorized: false },
 },
});

// Define a "Project" model

const Project = sequelize.define('Project', {
 title: Sequelize.STRING,
 description: Sequelize.TEXT,
});

// synchronize the Database with our models and automatically add the
// table if it does not exist

sequelize.sync().then(() => {
 // create a new "Project" and add it to the database
 Project.create({
 title: 'Project1',
 description: 'First Project',
 })
 .then((project) => {
 // you can now access the newly created Project via the variable project
 console.log('success!');
 })
 .catch((error) => {
 console.log('something went wrong!');

https://en.wikipedia.org/wiki/Object-relational_mapping

Once again, database is your randomly generated “User & Default database” value, user is also your

randomly generated “User & Default database” value, password is your password and lastly, host will be

your server host url.

There is a lot going on in the above code - but before we walk through what everything is doing, try updating

the above code with your database credentials and run it once again with node server.js. You should see

the something very similar to the following output:

It appears that Sequelize has done some of the heavy lifting for us. To confirm that the create operation was

successful and that we have indeed persisted "Project1" in a new "Projects" table, go back to your pgAdmin

application, right-click on "Tables" and choose "Refresh". You should now see our new "Projects" table in the

list.

To view the contents of the table, right-click on the "Projects" table and select View / Edit Data > All

Rows. This will open a new window with a grid view that you can use to explore the data in the table:

You will notice that there are some columns in the "Project" table that we didn't define in our "Project" Model;

specifically: id, createdAt and updatedAt; recall:

It follows that the title and description columns are there, but where did the others come from? The addition

of the extra columns are actually added by default by the sequelize module. Whenever we "define" a new

 });
});

Executing (default): INSERT INTO "Projects"
("id","title","description","createdAt","updatedAt") VALUES
(DEFAULT,'Project1','First Project','2017-02-28 22:45:25.163 +00:00','2017-02-28
22:45:25.163 +00:00') RETURNING *;
success!

// Define a "Project" model

const Project = sequelize.define('Project', {
 title: Sequelize.STRING,
 description: Sequelize.TEXT,
});

model, we automatically get id, createdAt and updatedAt and when we save data using this model, our

data is automatically updated to include correct values for those fields. This is extremely handy, as we didn't

actually create our primary-key for the table (sequelize went ahead and made "id" our primary key). Also, the

createdAt and updatedAt fields are both widely used. However, if we decide that we want to specify our

own auto-incrementing primary key and remove the createdAt and updatedAt fields, we can define our model

using the following code instead:

Now that we have defined our Project model (either with or without the "createdAt" and "updatedAt"

timestamps) we can look at the rest of the code, ie the sync() operation and creating Project1 - recall:

// Define a "Project" model

const Project = sequelize.define(
 'Project',
 {
 project_id: {
 type: Sequelize.INTEGER,
 primaryKey: true, // use "project_id" as a primary key
 autoIncrement: true, // automatically increment the value
 },
 title: Sequelize.STRING,
 description: Sequelize.TEXT,
 },
 {
 createdAt: false, // disable createdAt
 updatedAt: false, // disable updatedAt
 }
);

// synchronize the Database with our models and automatically add the
// table if it does not exist

sequelize.sync().then(() => {
 // create a new "Project" and add it to the database
 Project.create({
 title: 'Project1',
 description: 'First Project',
 })
 .then((project) => {
 // you can now access the newly created Project via the variable project
 console.log('success!');
 })

The sequelize.sync() operation needs to be completed before we can do anything else. This ensures that all

of our models are represented in the database as tables. If we have defined a model in our code that doesn't

correspond to a table in the database, sequelize.sync() will automatically create it (as we have seen).

NOTE: We do not have to sync() the database before every operation. This is only required when the

server starts to ensure that the models are correctly represented as tables within the database.

Once our models have been successfully sync()'d with the database, we can start working with the data. You

will notice that we use the familiar then() and catch() functions; this is because both sync() and create()

return a promise and as we stated above, we must work with the data after the sync() operation has

successfully completed.

If sync() resolves successfully, we then wish to create a new record in the "Project" table, so we use

Project.create() method and pass it some data (title and description). If the operation completed

successfully, we see the message "success!" in the console - otherwise we catch the error and output

"something went wrong!"

Defining Models

One of the most important things we must do when working with Sequelize is to correctly set up our models.

Once the models are set up successfully, working with the data is simple. Since each model technically

corresponds to a table within our database, what we are really doing is defining tables. Each column of a

table within our database stores a specific type of data. In our previous example, we define the column title

as a STRING and the column description as TEXT within a table called Project.

Sequelize provides definitions for a full list of types, and each column is given a type. The following is a list of

the most common types:

Sequelize.STRING - A variable length string. Default length 255

Sequelize.TEXT - An unlimited length text column.

Sequelize.INTEGER - A 32 bit integer.

Sequelize.FLOAT - Floating point number (4-byte precision).

Sequelize.DOUBLE - Floating point number (8-byte precision)

 .catch((error) => {
 console.log('something went wrong!');
 });
});

https://sequelize.org/docs/v6/core-concepts/model-basics/#model-synchronization
https://sequelize.org/master/manual/models-definition.html
https://sequelize.org/docs/v6/core-concepts/model-basics/#data-types

Sequelize.DATE - A datetime column

Sequelize.TIME - A time column

Sequelize.BOOLEAN - A boolean column

So, if we want to define a model (table) that stores blog entries, we could use the following code:

NOTE: It is also possible to introduce data validation when we define our models. For a full list of

available rules and how they're implemented, see: Validators in the official documentation.

Model Relationships / Associations

In a relational database system, tables (models) can be related using foreign key relationships /

associations. For example, say we have a table of Users and a table of Tasks, where each User could have

1 or more Tasks. To enforce this relationship, we would add an additional column on the Tasks table as a

foreign-key to the Users table, since 1 or more Tasks could belong to a specific user. For example, "Task 1",

"Task 2" and "Task 3" could all belong to "User 1", whereas "Task 4" and "Task 5" may belong to "User 2".

Using Sequelize models, we can easily define this relationship using the hasMany() / belongsTo() methods

(since "User has many Task(s)"), for example:

// Define a "BlogEntry" model

const BlogEntry = sequelize.define('BlogEntry', {
 title: Sequelize.STRING, // entry title
 author: Sequelize.STRING, // author of the entry
 entry: Sequelize.TEXT, // main text for the entry
 views: Sequelize.INTEGER, // number of views
 postDate: Sequelize.DATE, // Date the entry was posted
});

// Define our "User" and "Task" models

const User = sequelize.define('User', {
 fullName: Sequelize.STRING, // the user's full name (ie: "Jason Bourne")
 title: Sequelize.STRING, // the user's title within the project (ie,
developer)
});

const Task = sequelize.define('Task', {
 title: Sequelize.STRING, // title of the task

https://sequelize.org/master/manual/validations-and-constraints.html
https://sequelize.org/docs/v6/core-concepts/assocs/

If we wish to create a User and then assign him some tasks, we can "create" the tasks immediately after the

user is created, ie:

Next, try running this code and take a look at your database in pgAdmin. You should see that two new

tables, "Users" and "Tasks" have been created, with "Jason Bourne" inside the "User" table and "Task 1"

and "Task 2" inside the "Task" table. The two new tasks will both have a UserId matching "Jason Bourne"'s

id. We have achieved the one-to-many relationship between this user and his tasks.

 description: Sequelize.TEXT, // main text for the task
});

// Associate Task with User & automatically create a foreign key
// relationship on "Task" via an automatically generated "UserId" field

Task.belongsTo(User);

sequelize.sync().then(() => {
 // Create user "Jason Bourne"
 User.create({
 fullName: 'Jason Bourne',
 title: 'developer',
 }).then((user) => {
 console.log('user created');

 // Create "Task 1" for the new user
 Task.create({
 title: 'Task 1',
 description: 'Task 1 description',
 UserId: user.id, // set the correct Userid foreign key
 }).then(() => {
 console.log('Task 1 created');
 });

 // Create "Task 2" for the new user
 Task.create({
 title: 'Task 2',
 description: 'Task 2 description',
 UserId: user.id, // set the correct Userid foreign key
 }).then(() => {
 console.log('Task 2 created');
 });
 });
});

NOTE: Sequelize also supports other types of relationships using:

hasOne()

belongsToMany()

For more information, refer to "Associations" in the official documentation.

https://sequelize.org/docs/v6/core-concepts/assocs/

On this page

Operations (CRUD) Reference

The four major operations that are typically performed on data are Create, Read, Update and Delete

(CRUD). Using these four operations, we can effectively work with the data in our database. Assume we

have a simple Name model defined:

We can use the following code to Create new names, Read a list of names, Update a specific name and

lastly Delete a name from the "Name" table in our database

Create

To create new names in our Name table, we can use the following code:

// Define a "Name" model

const Name = sequelize.define('Name', {
 fName: Sequelize.STRING, // first Name
 lName: Sequelize.STRING, // Last Name
});

sequelize.sync().then(() => {
 Name.create({
 fName: 'Kyler',
 lName: 'Odin',
 }).then(() => {
 console.log('Kyler Odin created');
 });

 Name.create({
 fName: 'Grier',
 lName: 'Garrick',
 }).then(() => {
 console.log('Grier Garrick created');
 });

 Name.create({

In the above code we create three new objects following the fields defined in our "Name" model. Since our

"Name" model is synchronized with the database, this adds three new records - each with their own unique

"id" value, as well as "createdAt" and "updatedAt" values for the implicit primary key and timestamp columns.

The create function automatically persists the new object to the database and since it also returns a promise,

we can execute code after the operation is complete. In this case we simply output the name to the console.

Read

To read entries from our Name table, we can use the following code:

 fName: 'Kolby',
 lName: 'Greyson',
 }).then(() => {
 console.log('Kolby Greyson created');
 });
});

sequelize.sync().then(() => {
 // return all first names only
 Name.findAll({
 attributes: ['fName'],
 }).then((data) => {
 console.log('All first names');
 for (let i = 0; i < data.length; i++) {
 console.log(data[i].fName);
 }
 });

 // return all first names where id == 2
 Name.findAll({
 attributes: ['fName'],
 where: {
 id: 2,
 },
 }).then((data) => {
 console.log('All first names where id == 2');
 for (let i = 0; i < data.length; i++) {
 console.log(data[i].fName);
 }
 });
});

https://sequelize.org/docs/v6/core-concepts/model-instances/#a-very-useful-shortcut-the-create-method
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise

Here, we are once again using a reference to our "Name" model. This time we are using it to fetch data from

the "Name" table using the findAll() method. This method takes a number of configuration options in it's

object parameter, such as attributes, which allows you to limit the columns that are returned (in this case we

only want 'fName') and a where parameter that enables us to specify conditions that the data must meet to

be returned. In the above example, id must have a value of 2.

NOTE: It is important to note that trying to log a model instance directly to console.log (ie:

console.log(data[i])) will produce a lot of clutter, since Sequelize instances have a lot of things

attached to them. Instead, you can use the .toJSON() method (which automatically guarantees the

instances to be JSON.stringify-ed well). See sequelize.org - logging instances for more information.

We can also specify an order that the returned data should be in, ie:

NOTE: See the documentation for advanced queries and fetching associated elements with the

"include" option when using Model Relationships / Associations (ie: Task.findAll({include:

[User]}))

Update

To update existing names in our Name table, we can use the following code:

sequelize.sync().then(() => {
 // return all first names only
 Name.findAll({ order: ['fName'] }).then((data) => {
 console.log('All data');
 for (let i = 0; i < data.length; i++) {
 console.log(data[i].fName);
 }
 });
});

sequelize.sync().then(() => {
 // update User 2's last name to "James"
 // NOTE: this also updates the "updatedAt field"
 Name.update(
 {
 lName: 'James',
 },
 {
 where: { id: 2 }, // only update user with id == 2

https://sequelize.org/docs/v6/core-concepts/model-querying-basics/#simple-select-queries
https://sequelize.org/docs/v6/core-concepts/model-instances/#note-logging-instances
https://sequelize.org/docs/v6/core-concepts/model-querying-basics/#ordering
https://sequelize.org/master/manual/querying.html
https://sequelize.org/docs/v6/advanced-association-concepts/eager-loading/#fetching-a-single-associated-element
http://localhost:3000/Relational-Database-Postgres/sequelize-orm-with-postgres#model-relationships--associations

In order to "update" a record in the "Name" table, we make use of the update method. This method takes two

parameters: an object that contains all of the properties and (updated) values for a record, and a second

object that is used to specify options for the update - most importantly, the "where" property. The "where"

property contains an object that is used to specify exactly which record should be updated. In this case, it is

the row that has an id value of 2.

Delete

To delete existing names in our Name table, we can use the following code:

The delete functionality is actually achieved via a method called destroy. In this case, we invoke the destroy

method on the model that contains the record that we wish to remove (ie, "Name"). It takes a single options

object as it's only parameter and like the update function, the most important option is the "where" property.

The "where" property contains an object that is used to specify exactly which record should be removed. In

this case, it is the row that has an id value of 3.

 }
).then(() => {
 console.log('successfully updated user 2');
 });
});

sequelize.sync().then(() => {
 // remove User 3 from the database
 Name.destroy({
 where: { id: 3 }, // only remove user with id == 3
 }).then(() => {
 console.log('successfully removed user 3');
 });
});

https://sequelize.org/docs/v6/core-concepts/model-instances/#updating-an-instance
https://sequelize.org/docs/v6/core-concepts/model-instances/#deleting-an-instance

Example Code

You may download the sample code for this topic here:

Relational-Database-Postgres

https://github.com/WPTF-Examples/Relational-Database-Postgres

On this page

Introduction to MongoDB

MongoDB is an open source database that stores its data as collection of JSON like documents known as

BSON or "Binary JSON", instead of tables with rows / columns. Technically, it is classified as a "NoSQL"

database - a popular alternative to traditional Relational Databases (RDBMS):

NoSQL (“non SQL” or “not only SQL”) databases were developed in the late 2000s with a focus on

scaling, fast queries, allowing for frequent application changes, and making programming simpler for

developers. Relational databases accessed with SQL (Structured Query Language) were developed in

the 1970s with a focus on reducing data duplication as storage was much more costly than developer

time. SQL databases tend to have rigid, complex, tabular schemas and typically require expensive

vertical scaling.

Some of the main benefits include:

Flexible data models

NoSQL databases typically have very flexible schemas. A flexible schema allows you to easily

make changes to your database as requirements change. You can iterate quickly and continuously

integrate new application features to provide value to your users faster.

Horizontal scaling

Most SQL databases require you to scale-up vertically (migrate to a larger, more expensive server)

when you exceed the capacity requirements of your current server. Conversely, most NoSQL

databases allow you to scale-out horizontally, meaning you can add cheaper commodity servers

whenever you need to.

Fast queries

Queries in NoSQL databases can be faster than SQL databases. Why? Data in SQL databases is

typically normalized, so queries for a single object or entity require you to join data from multiple

tables. As your tables grow in size, the joins can become expensive. However, data in NoSQL

databases is typically stored in a way that is optimized for queries. The rule of thumb when you use

MongoDB is data that is accessed together should be stored together. Queries typically do not

require joins, so the queries are very fast.

Easy for developers

Some NoSQL databases like MongoDB map their data structures to those of popular programming

languages. This mapping allows developers to store their data in the same way that they use it in

their application code. While it may seem like a trivial advantage, this mapping can allow

developers to write less code, leading to faster development time and fewer bugs.

https://www.mongodb.com/nosql-explained

NoSQL vs Traditional SQL

As we have seen, one of the major differences between NoSQL and traditional SQL systems is the way the

data is structured, ie: SQL databases are table-based. This means they use a rigid schema where data is

organized into tables with rows and columns and primary / foreign keys to establish relationships between

them. NoSQL databases however, can have different structures such as document-oriented (in the case of

MongoDB), key-value pairs, or graph structures. In a NoSQL database, a document can contain key-value

pairs and can be ordered and nested. Ths leads to additional benefits mentioned above, such horizontal

scaling and fast queries.

Before we get started with MongoDB, we should be familiar with how some of the terms translate to

traditional RDBMS:

RDBMS term MongoDB term

Table Collection

Record Document

Column Field

Joins Embed data or link to another collection

See: MongoDB vs. MySQL Differences

Setting up a MongoDB Atlas account

MongoDB Atlas is a free online service that hosts MongoDB in the cloud:

https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.mongodb.com/compare/mongodb-mysql

MongoDB Atlas is a multi-cloud database service by the same people that build MongoDB. Atlas

simplifies deploying and managing your databases while offering the versatility you need to build

resilient and performant global applications on the cloud providers of your choice.

https://www.mongodb.com/docs/atlas

To get started, open https://www.mongodb.com/cloud/atlas and click the "Try free" button.

This will take you to the "register" page, where you can either create an account with Atlas, or sign in with

Google. If you prefer to sign in with GitHub, you can proceed directly to:

https://account.mongodb.com/account/login and click the "GitHub" button.

Once you have logged in, you should be prompted to "Create a deployment". To begin:

Click the "+ Create" button to continue.

At the next screen, we will see the "Deploy your database" options. Be sure to Choose the "FREE"

option before clicking the large, green "Create" button:

You will then be taken to the "Security Quickstart" screen, which should have the "Username and

Password" option checked with a form containing pre-filled values for the "Username" and "Password".

Write these down as we will need them later, and click the green "Create User" button

With this section complete, you should be taken to a "Where would you like to connect from?"

screen with "My Local Environment" selected and an "IP Access List". For now, we will allow access

from anywhere, so ensure that you enter the following values "0.0.0.0/0" and "any" before clicking the

"Add Entry" button:

Finally, click the "Finish and Close" button

Obtaining your Connection String

Once your cluster has been created, you should be taken to the "Overview" screen, where we can view our

deployments.

https://www.mongodb.com/docs/atlas/#what-is-service-fullname-
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas/register
https://account.mongodb.com/account/login

From here, click the "CONNECT" button and choose the "Drivers" option

Scroll down to "3. Add your connection string into your application code" and write down the

connection string (we will need it later) - it should look something like:

Finally, replace the <password> value with the password recorded from earlier, ie:

mongodb+srv://user:yourPassword@cluster0.abc123.mongodb.net/?

retryWrites=true&w=majority and click the "Close" button to return to the "Overview" screen.

mongodb+srv://user:<password>@cluster0.abc123.mongodb.net/?
retryWrites=true&w=majority

On this page

Mongoose ODM with MongoDB

When we work with MongoDB in Node, we won't work directly with the MongoDB driver. Instead, we will use

a popular open source module called "Mongoose" - an ODM ("Object Data Modeling") library that serves as

a wrapper for the Mongo driver and provides extra functionality:

"Mongoose provides a straight-forward, schema-based solution to model your application data. It

includes built-in type casting, validation, query building, business logic hooks and more, out of the box.".

https://mongoosejs.com

To begin working with Mongoose, we need to retrieve it from NPM:

and 'require' it in our code:

Mongoose Schemas

Before we look at how to establish a connection to our MongoDB Atlas DB and work with the data using

Mongoose, let's first determine the type of data that we wish to store. For example, let's say that our

application requires "company" information to be persisted. Each "company" used by our system can be

represented using the following properties (ie, its "shape"), as illustrated below for "The Kwik-E-Mart":

npm install mongoose

const mongoose = require('mongoose');

{
 companyName: "The Kwik-E-Mart",
 address: "Springfield",
 phone: "212-842-4923",
 employeeCount: 3,
 country: "U.S.A"
}

https://mongoosejs.com/
https://www.npmjs.com/package/mongoose

To begin working with "companies" like this in our database using Mongoose, the first step is to create a

"schema".

Creating a Schema

From the documentation: "Everything in Mongoose starts with a Schema. Each schema maps to a MongoDB

collection and defines the shape of the documents within that collection". So, for us to work with a specific

collection in our MongoDB database, we must first define a "schema", which defines the structure of the

documents to be added to the collection (as well as to provide other features such as "validators", etc.).

To represent the above company data as a Mongoose Schema, we can use the following code:

Essentially, a schema is like a blueprint for a document that will be saved in the DB. Here, we define the

fields that can exist on a document for this collection, and setting their expected types, default values, and

sometimes if they are required, or have an index on them.

In the above code, we have defined a Company schema with 5 properties as discussed, and set their types

appropriately. The employee count is not just a simple number, we also want to include a default value of 0 of

the count field is not supplied. Using defaults where it makes sense to have them is good practice.

The last line of code tells mongoose to register this schema (companySchema) as a model and connect it to

the companies collection (Note: the "companies" collection will be automatically created if it doesn't exist

yet). We can then use the Company variable to make queries against this collection and insert, update, or

remove documents from the Company model.

const mongoose = require('mongoose');
let Schema = mongoose.Schema;

let companySchema = new Schema({
 companyName: String,
 address: String,
 phone: String,
 employeeCount: {
 type: Number,
 default: 0,
 },
 country: String,
});

let Company = mongoose.model('companies', companySchema);

https://mongoosejs.com/docs/guide.html#definition
https://mongoosejs.com/docs/validation.html#validation
http://mongoosejs.com/docs/schematypes.html
http://mongoosejs.com/docs/schematypes.html

Unique Index

A unique index may also be applied at the database level and can be attached to one or more fields of a

document.

The most common use for this is when we want to enforce a unique value across all documents in a

collection for a certain field. A perfect use case for this is the companyName field of our company schema,

ie: it wouldn't make sense to have multiple companies with the same name in the system. To prevent this

and add a unique index in to the companyName field, we just have to add unique: true to the schema

declaration from before.

NOTE: With the "unique: true" property set on the "companyName" field, Mongoose will return "E11000

duplicate key error" if we try to save two companies with the same "companyName" field.

Adding Data

Now that we have determined the "schema", let's see how Mongoose works to add our data ("The Kwik-E-

Mart") to the database.

NOTE: For the below code to function correctly, you will need to place your connection string

(determined earlier in Introduction to MongoDB), in place of the 'Your connection string here' .

You will also have to update it to include a database name. For example, if your connection string looks

like the following:

// define the company schema
const companySchema = new Schema({
 companyName: {
 type: String,
 unique: true,
 },
 address: String,
 phone: String,
 employeeCount: {
 type: Number,
 default: 0,
 },
 country: String,
});

http://localhost:3000/NoSQL-Database-MongoDB/introduction-to-mongodb#obtaining-your-connection-string

You must update it to include a database name so that the default name: "test" is not used. For

example, if you wish your database to be called "demo", you would update the connection string to

include "demo" after "mongodb.net/", ie:

mongodb+srv://user:yourPassword@cluster0.abc123.mongodb.net/?
retryWrites=true&w=majority

mongodb+srv://user:yourPassword@cluster0.abc123.mongodb.net/demo?
retryWrites=true&w=majority

// require mongoose and setup the Schema
const mongoose = require('mongoose');
let Schema = mongoose.Schema;

// connect to Your MongoDB Atlas Database
mongoose.connect('Your connection string here');

// define the company schema
let companySchema = new Schema({
 companyName: String,
 address: String,
 phone: String,
 employeeCount: {
 type: Number,
 default: 0,
 },
 country: String,
});
// register the Company model using the companySchema
// use the companies collection in the db to store documents
let Company = mongoose.model('companies', companySchema);

// create a new company
let kwikEMart = new Company({
 companyName: 'The Kwik-E-Mart',
 address: 'Springfield',
 phone: '212-842-4923',
 employeeCount: 3,
 country: 'U.S.A',
});

// save the company

Reading Data

To confirm that our data was indeed added to the database, we can either log back in to MongoDB Atlas and

click "Browse collections" for our cluster:

or we can query the data using Mongoose to confirm that it was entered correctly. Here, we will use the

same code as above (being sure to include the code to create the "Company" object), except we can omit

creating & saving a new "Company" (ie: "kwikEMart"). Instead, we will use the "find" method on the

"Company" model to locate our "The Kwik-E-Mart" company:

kwikEMart
 .save()
 .then(() => {
 console.log('The Kwik-E-Mart company was saved to the companies
collection');
 process.exit();
 })
 .catch((err) => {
 console.log('There was an error saving the Kwik-E-Mart company');
 process.exit();
 });

Company.find({ companyName: 'The Kwik-E-Mart' })
 .exec()
 .then((company) => {
 if (!company) {
 console.log('No company could be found');
 } else {
 console.log(company);
 }
 // exit the program after saving and finding
 process.exit();
 })
 .catch((err) => {
 console.log(`There was an error: ${err}`);
 process.exit();
 });

https://mongoosejs.com/docs/api/model.html#Model.find()

NOTE: If you examine the output, you will notice that the data returned includes two extra fields, added

by default to our document:

_id: A unique ObjectID

__v: The versionKey

.exec()

The .exec() call is added after a mongoose query to tell mongoose to return a promise. If you leave out the

.exec(), mongoose will still work with .then() calls but the object returned will not be a proper promise. It is

good practice to always use .exec() after your query has been setup and before the .then() method is

invoked.

Arrays and Recursive Schemas

A "recursive schema" is a schema that contains an array of elements with the same schema as the

definition. We can use this to store tree structures such as file / folder hierarchies or comment trees for a

blog post. For example: say we wish to store a tree of comments, where each comment can have one or

more comments, which can have one or more comments, and so on. We can specify our recursive

"commentSchema" using the following code:

Here, we add a "comments" field with a type of "[commentSchema]" to the original "commentSchema".

Using this syntax, we indicate that all "comments" will consist of an Array defined by "commentSchema".

Now, we can easily create documents that appear in this format, ie:

const commentSchema = new Schema({
 comment: String,
 author: String,
 date: Date,
});

commentSchema.add({ comments: [commentSchema] });

let Comment = mongoose.model('comments', commentSchema);

let commentChain = new Comment({
 comment: 'Star Wars is awesome',
 author: 'Author 1',

https://docs.mongodb.com/manual/reference/bson-types/#std-label-objectid
https://mongoosejs.com/docs/guide.html#versionKey
https://mongoosejs.com/docs/promises.html#queries-are-not-promises
https://mongoosejs.com/docs/schematypes.html#arrays

Multiple Connections

Using Mongoose, it is also possible to have multiple connections configured for your application. If this is the

case, we have to make a few small changes on how we connect to each DB, and how we define our models

NOTE: The use of the "encodeURIComponent" is necessary if your password contains special

characters, ie "$"

 date: new Date(),
 comments: [
 {
 comment: 'I agree',
 author: 'Author 2',
 date: new Date(),
 comments: [
 {
 comment: 'I agree with Author 2',
 author: 'Author 3',
 date: new Date(),
 comments: [],
 },
],
 },
],
});

// ...

let pass1 = encodeURIComponent('pa$$word1'); // this step is needed if there are
special characters in your password, ie "$"
let db1 = mongoose.createConnection(
 `mongodb+srv://user:${pass1}@cluster0.abc123.mongodb.net/demo?
retryWrites=true&w=majority`
);

// verify the db1 connection

db1.on('error', (err) => {
 console.log('db1 error!');
});

db1.once('open', () => {

https://mongoosejs.com/docs/connections.html#multiple_connections
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent

Instead of using "connect", we instead use "createConnection" and save the result as a reference to the

connection (ie: "db1" and "db2" from above). We can then use db1 or db2 to create models on each

database separately. Additionally, if we want to test the connection, we can use the .on() and .once()

methods of each connection.

 console.log('db1 success!');
});

// ...

let pass2 = encodeURIComponent('pa$$word2'); // this step is needed if there are
special characters in your password, ie "$"
let db2 = mongoose.createConnection(
 `mongodb+srv://dbUser:${pass2}@cluster0.2def3.mongodb.net/db2?
retryWrites=true&w=majority`
);

// ...

let model1 = db1.model('model1', model1Schema); // predefined "model1Schema"
used to create "model1" on db1

let model2 = db2.model('model2', model2Schema); // predefined "model2Schema"
used to create "model2" on db2

// ...

On this page

Operations (CRUD) Reference

Once again, we will be discussing the four major operations typically performed on data: Create, Read,

Update and Delete (CRUD). The operations in the code below will each work with the familiar

"companySchema" using the "Company" model:

Create

To "save" (create) a new document, we must first create the document in code using the model we want (ie:

"Company"). Then we can call a built in method, "save" on the new object to save it.

let companySchema = new Schema({
 companyName: String,
 address: String,
 phone: String,
 employeeCount: {
 type: Number,
 default: 0,
 },
 country: String,
});

let Company = mongoose.model('companies', companySchema);

const kwikEMart = new Company({ ... });

kwikEMart.save().then(() => {
 // everything good
 console.log("kwikEMart saved");
}).catch(err => {
 // there was an error
 console.log(err);
});

https://mongoosejs.com/docs/models.html#constructing-documents

Read

To "find" (read) documents from the database, we use the "find" method on the model object itself (ie:

"Company"), ie:

Selecting specific fields

If we wish to limit the results to include only specific fields, we can pass the list of fields as a space-

separated string in the second parameter to the find() method, ie:

For complex queries (ie: "greater than", "in", "or", etc, etc.) see the Mongoose Query Guide and the

MongoDB documentation under Query and Projection Operators

Update

To update documents in the database, we use the updateOne() / updateMany() methods on the model object

(ie: "Company"). We typically pass these function two arguments: the query to select which documents to

update and the fields to set for the documents that match the query.

Company.find({ companyName: 'The Kwik-E-Mart' })
 //.sort({}) //optional "sort" -
https://docs.mongodb.com/manual/reference/operator/aggregation/sort/
 .exec()
 .then((companies) => {
 // companies will be an array of objects.
 // Each object will represent a document that matched the query
 console.log(companies);
 });

Company.find({ companyName: 'The Kwik-E-Mart' }, 'address phone')
 //.sort({}) //optional "sort" -
https://docs.mongodb.com/manual/reference/operator/aggregation/sort/
 .exec()
 .then((companies) => {
 // companies will be an array of objects.
 // Each object will represent a document that matched the query
 console.log(companies);
 });

https://mongoosejs.com/docs/api/model.html#Model.find()
https://docs.mongodb.com/manual/reference/operator/query/gt/
https://docs.mongodb.com/manual/reference/operator/query/in/
https://docs.mongodb.com/manual/reference/operator/query/or/
https://mongoosejs.com/docs/queries.html
https://docs.mongodb.com/manual/reference/operator/query/
https://mongoosejs.com/docs/api/model.html#Model.updateOne()
https://mongoosejs.com/docs/api/model.html#Model.updateMany()

NOTE: See update operators, ie: $set, $push and $addToSet for more information.

Delete

To delete documents in the database, we use the deleteOne() / deleteMany() methods on the model object

(ie: "Company").

Company.updateOne({ companyName: 'The Kwik-E-Mart' }, { $set: { employeeCount:
3 } })
 .exec()
 .then(() => {
 // updated company
 console.log('updated company');
 })
 .catch((err) => {
 console.log(err);
 });

Company.deleteOne({ companyName: 'The Kwik-E-Mart' })
 .exec()
 .then(() => {
 // removed company
 console.log('removed company');
 })
 .catch((err) => {
 console.log(err);
 });

https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/set/
https://docs.mongodb.com/manual/reference/operator/update/push/
https://docs.mongodb.com/manual/reference/operator/update/addToSet/
https://mongoosejs.com/docs/api/model.html#Model.deleteOne()
https://mongoosejs.com/docs/api/model.html#Model.deleteMany()

Example Code

You may download the sample code for this topic here:

NoSQL-Database-MongoDB

https://github.com/WPTF-Examples/NoSQL-Database-MongoDB

On this page

Key Terminology

When we talk about "State Management" in an Express application, we generally refer to the process of

maintaining and managing user data between requests in a "session". For example, this may involve keeping

track of whether a user has logged in, or what items are in their shopping cart. Our application needs to

know the status (ie: "state") of the client so that it can respond appropriately. Has the user previously been

authenticated? What are the product id's of the items in their cart?

To enable this functionality within our applications, we must work with:

1. Cookies

2. Sessions

3. Encryption

We are going to cover Cookies and Sessions below and briefly touch on encryption as it applies to cookies

and sessions. In "Security Considerations", we will go into more detail on encryption for other purposes.

Cookies

Recall from Advanced Routing & Middleware, "cookies" are pieces of data that are passed back and forth

from the browser to the server that hold state information about the current audience interacting with your

application.

Each time a request is made from the browser or a response is sent from the server, a set of headers is

included. Request headers contain the 'Cookie' header and response headers contain the 'Set-Cookie'

header. These headers are a string of semicolon separated values that can be referenced in server side

code using the ‘req’ object. The most common type of data we want to place in the cookie is a "session"

value.

Here is an example of what a cookie might look like in the request header when inspecting it in the Chrome

dev tools

Cookie: COOKIE_CONSENT_ACCEPTED=true; PS_DEVICEFEATURES=width:1680 height:1050

pixelratio:2 touch:0 geolocation:1 websockets:1 webworkers:1 datepicker:1 dtpicker:1 timepicker:1 dnd:1

sessionstorage:1 localstorage:1 history:1 canvas:1 svg:1 postmessage:1 hc:0 maf:0;

http://localhost:3000/Advanced-Routing-Middleware/middleware

AWSELB=25B9EB610A4727BBBAAA553BD60CC37D8297F3411BEB083D3A756E7C927A16B55DE1

AF9292A34C533329A16DEEFAB2D1F0A8885F83FB98BB17D96810C5F56F19DD91CE2710;

AWSELBCORS=25B9EB610A4727BBBAAA553BD60CC37D8297F3411BEB083D3A756E7C927A16B

55DE1AF9292A34C533329A16DEEFAB2D1F0A8885F83FB98BB17D96810C5F56F19DD91CE2710;

BbClientCalenderTimeZone=America/Toronto;

JSESSIONID=30A73795E59C58AA9DE10E9A55611D84;

samlCookie=33323A4F65773352327570346E792F7138547478616F417A38613172304E6A797A5170

65457A74684F574E746F476C59412B474F4E7963465151695275304D49526E72;

BbRouter=expires:1692983209,id:FA96503450967749E204905096629DDA,sessionId:4644480316,sig

nature:b0f5dc80530391a6aaa921cf7e2f29bc18af9e19b62e6f9a34d5287cb910f86c,site:47804be6-4f5a-

41e6-9752-

f1324b876acb,timeout:10800,user:94048796fad9425cb85b38fe6cc9a794,v:2,xsrf:a2aaa822-9f18-49ef-

b62c-911a845d78c5

And here is an example of the ‘Set-Cookie’ header in a response from the server to update it after a request

Set-Cookie:

BbRouter=expires:1692983219,id:FA96503450967749E204905096629DDA,sessionId:4644480316,sig

nature:7aa65c9e8d01384c96897743bc1ef4ff919b0342f37c8f8e0525c6566aa411fb,site:47804be6-4f5a-

41e6-9752-

f1324b876acb,timeout:10800,user:94048796fad9425cb85b38fe6cc9a794,v:2,xsrf:a2aaa822-9f18-49ef-

b62c-911a845d78c5; Path=/; Secure; HttpOnly

Notice how the 'Cookie' header contains a session ID and digital signature. It may also contain other

elements depending on what the app intends to retain in the 'state' between user requests. In the above

case, an 'encrypted session' is utilized (which is why we're unable to read it). This is extremely important in

a production environment, as we do not want sensitive user information to be compromised if the cookie is

accessed by a third party. As a general rule, all sessions that persist between the client and server should be

encrypted and transmitted exclusively over HTTPS. We will cover HTTPS encryption in "Security

Considerations".

Sessions

Implementing sessions is fairly straightforward in Express.js. The platform is mature and libraries have been

tested with thousands of websites and billions of logins. These libraries are easy to use and integrate into

your own projects.

A popular library for implementing client sessions is Mozilla’s "client sessions" Node library. This library

focuses on keeping sessions between the client and server on the client. This has several advantages over

https://github.com/mozilla/node-client-sessions

storing and keeping track of them in memory on the server. For example, if the server restarts and you have

not yet saved session information in a persistent storage location, it will be lost and all your users will be

logged out.

It is also beneficial to keep your sessions on the client (and have them continuously sent with each request),

as this enables you to host a website or app with multiple web servers, while ensuring the session remains

active regardless of the server used to process the response. If this were not the case, we must ensure each

users’ requests are always sent to the same web server to preserve their session. Alternatively, you could

attempt to replicate server session information between web servers, however this can be very complex. For

these reasons, storing the session on the client makes scaling and session management a lot easier.

Authentication vs Authorization

Authentication and Authorization mean two entirely different things. It can be easy to confuse them, so let’s

discuss them a little bit before we begin to implement sessions and secure routes. This will enable you to be

more comfortable explaining and debugging the two different concepts.

Authentication is the answer to “Who are you?”. It involves supplying credentials to identify yourself to the

server and establish a session for your user account.

Authorization is the answer to “What do you have access to?”. It involves checking your permissions to

resources you have requested and acting accordingly. You may be authenticated with the server and have a

user session but you might not be authorized to view a certain resource. (No permissions!)

Here is quick video from MongoDB University that explains it nicely. MongoDB also has the concept of

authentication and authorization.

Status codes

There are a number of standard http response status codes that can be used by your application to inform

the browser of whether a request was rejected because of an authentication problem or an authorization

problem.

401 (Unauthorized): Authentication error. The resource exists but it requires the user to be

authenticated first to view it. It may also require permissions and be checked again after authenticating

for proper authorization.

403 (Forbidden): Authorization error. The resource exists but the user does not have permission to view

it.

404 (Not Found): The resource that was requested was not found on the server. This is commonly used

when a url is requested that simply doesn’t exist.

On this page

Introduction to "Client Sessions"

We have established that there are multiple benefits to storing "session" data on the client in an encrypted

cookie:

The data is always available, regardless of which machine is serving a user

There is no state to manage on servers

Nothing needs to be replicated between the web servers

New web servers can be added instantly

"Using secure client-side sessions to build simple and scalable Node.JS applications"

Additionally, we have seen that this technology is widely tested and has been made available via the "client

sessions" Node library. In the following sections, we will see how we can implement and test this library in

our servers.

The "client-sessions" Library

The "client-sessions" library is available on NPM and can be included in our project using the familiar steps

to install:

and 'require' it in our code

Middleware

Once we have a reference to "clientSessions", we register it as middleware and configure it using the

"cookieName", "secret", "duration" and "activeDuration" properties:

npm install client-sessions

const clientSessions = require('client-sessions');

https://hacks.mozilla.org/2012/12/using-secure-client-side-sessions-to-build-simple-and-scalable-node-js-applications-a-node-js-holiday-season-part-3/
https://github.com/mozilla/node-client-sessions
https://www.npmjs.com/package/client-sessions

Testing

To ensure that clientSessions is working properly, add the following simple routes and start the server:

When you navigate to the "/session-test-add" route with a "message" query parameter, ie:

You should see that a "Set Cookie" header was sent in the response with a value that should look like

the following:

app.use(
 clientSessions({
 cookieName: 'session', // this is the object name that will be added to
'req'
 secret: 'o6LjQ5EVNC28ZgK64hDELM18ScpFQr', // this should be a long un-
guessable string.
 duration: 2 * 60 * 1000, // duration of the session in milliseconds (2
minutes)
 activeDuration: 1000 * 60, // the session will be extended by this many ms
each request (1 minute)
 })
);

app.get('/session-test-add', (req, res) => {
 req.session.message = req.query.message || ''; // add a "message" property to
the session
 res.send("session created with using 'message' query parameter");
});

app.get('/session-test-read', (req, res) => {
 res.send(`session message: ${req.session.message}`); // read the "message"
property from the session
});

/session-test-add?message=Hello World!

session=25uFcTuHZzZlSWntEs-
Kzg.D96gsJqB0lLKj4DBZsc3KSj4Z4_76pkoCy4uXUqgS1C4uuHbaxMZ6l9dTCWu-
ijc.1692988779453.120000.FprcH5eIT-o6Iedv-vP2i0P8HmzCRMXGdm813oveVBc; path=/;
expires=Fri, 25 Aug 2023 18:41:40 GMT; httponly

This confirms that our session value was indeed encrypted and sent to the client.

To test whether or not our server can read it, navigate to the other route:

You should see the response text: "session message: Hello World!". Additionally, you should see that a

"Cookie" header was sent in the request with a value like:

Practical Application

We can now confirm that "client sessions" is working correctly - we are able to add values to the session,

which are encrypted and sent to the client using a "cookie". As a more practical test of this technology, we

will implement a simple app with a "login" view and a protected "dashboard" view that may only be accessed

once the user has logged in.

To begin, create a simple web server using Express, making sure to also install and configure EJS (see:

"Template Engines" - EJS).

Routes

The server should have three routes:

GET "/login" - renders a "login.ejs" file with an empty "message"

POST "/login" - renders a "/login.ejs" file with an "invalid login" message

/session-test-read

session=AqnLAnL7dqAr9QqXnpD5Xw.wcCqiCvVSRgllI1mLOAC9yHmjjLygsur7AQaKX50_9vkugEn
2vR3vKILSPluM8tyaghTnYCE

app.get('/login', (req, res) => {
 res.render('login', { message: '' });
});

app.post('/login', (req, res) => {
 res.render('login', { message: 'invalid login' });
});

http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs
http://localhost:3000/Template-Engines/ejs-embedded-javaScript-templates

GET "/dashboard" - renders a "dashboard.ejs" file with a "user" object from the session

Templates

Next, we must create our two EJS template files: "login.ejs" and "dashboard.ejs" in a views directory:

views/login.ejs

views/dashboard.ejs

app.get('/dashboard', (req, res) => {
 res.render('dashboard', { user: req.session.user });
});

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Login</title>
 </head>
 <body>
 <h1>Log In</h1>
 <hr />

 <form method="post" action="/login">
 <input type="text" placeholder="User Name" name="userName" />
 <input type="password" placeholder="Password" name="password" />
 <button type="submit">Log In</button>
 </form>

 <%= message %>
 </body>
</html>

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

Middleware

The next part of our application is the middleware. We will require:

The built-in urlencoded middleware:

The client-sessions middleware - installed using NPM and included using:

const clientSessions = require("client-sessions");

Custom middleware, used to protect a route from unauthorized access:

 <title>Dashboard</title>
 </head>
 <body>
 <h1>Dashboard</h1>
 <hr />

 <h3>Hello <%= user.userName %></h3>
 <p>Welcome to your dashboard</p>
 <p>Here is the information we have on file for you:</p>
 <h4>userName: <%= user.userName %></h4>
 <h4>email: <%= user.email %></h4>
 Logout
 </body>
</html>

app.use(express.urlencoded({ extended: true }));

app.use(
 clientSessions({
 cookieName: 'session', // this is the object name that will be added to
'req'
 secret: 'o6LjQ5EVNC28ZgK64hDELM18ScpFQr', // this should be a long un-
guessable string.
 duration: 2 * 60 * 1000, // duration of the session in milliseconds (2
minutes)
 activeDuration: 1000 * 60, // the session will be extended by this many
ms each request (1 minute)
 })
);

Route Updates (Logic)

The final piece of our application is to add some logic to our routes. Specifically, we should add logic to

validate the userName / password combination against a predefined (hard-coded) user. If the user is

authenticated, a session should be created which gives them access to the "dashboard" route.

To begin, let's add our "ensureLogin" middleware function to the "/dashboard" route to prevent unauthorized

access:

Next, we will update our POST "/login" route to authenticate the "userName" and "password" values from the

login form against a mock user. If the credentials match, create a session for the user, otherwise re-render

the "login" template with the error message.

function ensureLogin(req, res, next) {
 if (!req.session.user) {
 res.redirect('/login');
 } else {
 next();
 }
}

app.get('/dashboard', ensureLogin, (req, res) => {
 res.render('dashboard', { user: req.session.user });
});

app.post('/login', (req, res) => {
 let mockUser = {
 userName: 'sampleuser',
 password: 'samplepassword',
 email: 'sampleuser@example.com',
 };

 if (req.body.userName == mockUser.userName && req.body.password ==
mockUser.password) {
 req.session.user = {
 userName: mockUser.userName,
 email: mockUser.email,
 };

 res.redirect('/dashboard');

NOTE: If we also wish to implement "log out" functionality, we could reset the session with the following

code:

 } else {
 res.render('login', { message: 'invalid login' });
 }
});

req.session.reset();

Example Code

You may download the sample code for this topic here:

Managing-State-Information

https://github.com/WPTF-Examples/Managing-State-Information

On this page

HTTPS Introduction

HTTPS is HTTP communication between a web browser and a server over a secure, encrypted connection,

using TLS (Transport Layer Security). The primary purpose for using HTTPS is to enable users to verify that

a website that transfers sensitive data, can do so in a secure and safe manner. HTTPS uses SSL/TLS

certificates on the server to encrypt the communication between the client and server so that packets in

transmission cannot be intercepted and used to either steal or forge information. The concept of capturing

packets in the middle of transmission between client and server or vice versa, is called a man in the middle

attack.

Digital Certificates

HTTPS uses a protocol known as "TLS" (formerly "SSL" or "Secure Sockets Layer") to enable secure

communication across a network in order to prevent tampering / eavesdropping. This is achieved through the

use of something called a "digital certificate":

Digital Certificates have a key pair: a public and a private key. These keys work together to establish an

encrypted connection. The certificate also contains what is called the “subject,” which is the identity of

the certificate/website owner.

The most important part of a certificate is that it is digitally signed by a trusted CA ("Certificate

Authority"), like DigiCert. Anyone can create a certificate, but browsers only trust certificates that come

from an organization on their list of trusted CAs. Browsers come with a pre-installed list of trusted CAs,

known as the Trusted Root CA store. In order to be added to the Trusted Root CA store and thus

become a Certificate Authority, a company must comply with and be audited against security and

authentication standards established by the browsers.

https://www.digicert.com

Essentially, for a website / app to use HTTPS, a certificate from a trusted source (such as "Digicert") is

required. This certificate contains a "digital signature", signed by the Certificate Authority (ie: "Digicert")

which proves the validity of the certificate and the website. It also contains a public / private key pair,

enabling messages to be encrypted using a public key, but only read using the corresponding private key.

Encrypting messages using a trusted website's public key is the first step to enabling two way encrypted

communication:

https://developer.mozilla.org/en-US/docs/Glossary/HTTPS
https://developer.mozilla.org/en-US/docs/Glossary/TLS
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://www.digicert.com/what-is-an-ssl-certificate
https://developer.mozilla.org/en-US/docs/Glossary/Signature/Security

1. When a web browser (or client) directs to a secured website, the website server shares its TLS/SSL

certificate and its public key with the client to establish a secure connection and a unique session

key.

2. The browser confirms that it recognizes and trusts the issuer, or Certificate Authority, of the SSL

certificate—in this case DigiCert. The browser also checks to ensure the TLS/SSL certificate is

unexpired, unrevoked, and that it can be trusted.

3. The browser sends back a symmetric session key and the server decrypts the symmetric session

key using its private key. The server then sends back an acknowledgement encrypted with the

session key to start the encrypted session.

4. Server and browser now encrypt all transmitted data with the session key. They begin a secure

session that protects message privacy, message integrity, and server security.

Viewing Certificates

Information about a website's digital certificate can be easily viewed in a modern web browser. Typically, to

the left of the URL bar, you will find a "lock" icon. Click on it to view information about your connection with

this website (screenshot taken in Chrome).

Notice how it shows that the site is using a secure connection with an option to "Show Connection Details".

Clicking this allows us to confirm that the certificate is indeed valid and was issued by "DigiCert Inc".

We may also switch to the "Details" pane, which provides information about the certificate, such as the

issuer, expiration date, and the encryption algorithms used.

With this information, we can confirm that sending login credentials and retrieving banking information from

CIBC is achieved using encrypted packets between the web browser and server. Anyone who might capture

them in transit would not be able to obtain any useful information.

Self Signed Certificates

SSL/TLS certificates can be created on your own and technically they can be used, however it is important to

note that these certificates should not be used in a production environment. This is because using your own

"self signed" certificates will result in a warning from the browser that your website is using an "untrusted"

certificate, since it did not come from a trusted CA.

Creating Self Signed Certificates (Development)

When testing HTTPS locally and during development, it is common to use a self signed certificate. We can

generate them in the terminal using the following command:

This will initiate the following prompts for information about the organization the certificate will be issued to.

The only important one for now is the Common Name - this must be localhost (ie: the domain the certificate

will be valid for), since we will be running our server locally:

This should generate two files: "server.crt" and "server.key:

Using SSL Certificates

openssl req -new -x509 -nodes -out server.crt -keyout server.key

Generating a 2048 bit RSA private key
.............................+++
...+++
writing new private key to 'server.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:CA
State or Province Name (full name) []:ON
Locality Name (eg, city) []:Toronto
Organization Name (eg, company) []:ACME Widgets
Organizational Unit Name (eg, section) []:IT Dept
Common Name (e.g. server FQDN or YOUR name) []:localhost
Email Address []:

Now that we have the required files (ie: "server.crt" and "server.key"), we can begin to configure our

"server.js" code to start listening for both HTTP and HTTPS connections:

You will notice that a few key changes have been made to our usual "simple web server". Primarily:

We import both the "http" and "https" modules, as well as the "fs" module (to read the .crt and .key files)

Use createServer() method for both "http" and "https", making sure to provide the values for both the

key and cert for the "https_options" parameter when using "https"

Finally, start the server and navigate to: https://localhost:4433

Depending on your web browser, you may observe a security warning if the system is functioning correctly. If

you get this warning (with "Advanced" selected) everything is working as intended so far.

const fs = require('fs');
const http = require('http');
const https = require('https');
const express = require('express');
const app = express();

const HTTP_PORT = process.env.PORT || 8080;
const HTTPS_PORT = 4433;

app.get('/', (req, res) => {
 res.send('Hello World');
});

// read in the contents of the HTTPS certificate and key

const https_options = {
 key: fs.readFileSync(__dirname + '/server.key'),
 cert: fs.readFileSync(__dirname + '/server.crt'),
};

// listen on ports HTTP_PORT and HTTPS_PORT.

http.createServer(app).listen(HTTP_PORT, () => {
 console.log(`http server listening on: ${HTTP_PORT}`);
});
https.createServer(https_options, app).listen(HTTPS_PORT, () => {
 console.log(`https server listening on: ${HTTPS_PORT}`);
});

http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs
https://nodejs.org/api/http.html
https://nodejs.org/api/https.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/https.html#httpscreateserveroptions-requestlistener
https://localhost:4433/

Warning in Firefox

Warning in Chrome

NOTE: If you do not see the option to "Proceed to localhost", then typing "thisisunsafe" will allow you

to proceed.

Accept the warnings to add an exemption and proceed to the page.

On this page

Password Encryption

HTTPS is a significant factor to consider when securing a website online; however, it does not encompass all

aspects of security. For example, what if unauthorized users gain access your database? This could result in

the theft of personal information such as credit card information or user passwords.

This is where the integration of an encryption library becomes important. One option to solve the above

problem is to enable "one-way" encryption, effectively encrypting plain text data in a way that makes it

impossible decipher. To verify if the encrypted data corresponds to specific plain text data, the plain text data

must be encrypted using the original method and compared.

This is a standard way to store and work with passwords. Encrypt them in the database when a user

registers and when they try to login, encrypt them once again and compare the encrypted passwords for a

match. This way we are never storing users' plain text passwords in the database and anyone who has

access to the database cannot read them.

Bcrypt

A famous encryption algorithm to achieve "one-way" encryption, is "bcrypt"

bcrypt is a password-hashing function designed by Niels Provos and David Mazières, based on the

Blowfish cipher and presented at USENIX in 1999. Besides incorporating a salt to protect against

rainbow table attacks, bcrypt is an adaptive function: over time, the iteration count can be increased to

make it slower, so it remains resistant to brute-force search attacks even with increasing computation

power.

https://en.wikipedia.org/wiki/Bcrypt

This sounds like exactly what we need. Fortunately, bcrypt is available on NPM via a module called:

"bcrypt.js".

npm install bcryptjs

const bcrypt = require('bcryptjs');

https://en.wikipedia.org/wiki/Bcrypt
https://www.npmjs.com/package/bcryptjs

Encrypting Passwords

If we wish to encrypt a plain text password (ie: "myPassword123"), we can use bcrypt to generate a "salt"

and "hash" the text:

Validating Encrypted Passwords

If we wish to compare the "hashed" text with plain text (to see if a user-entered password matches the value

in the DB), we use:

// Encrypt the plain text: "myPassword123"
bcrypt
 .hash('myPassword123', 10)
 .then((hash) => {
 // Hash the password using a Salt that was generated using 10 rounds
 // TODO: Store the resulting "hash" value in the DB
 })
 .catch((err) => {
 console.log(err); // Show any errors that occurred during the process
 });

// Pull the password "hash" value from the DB and compare it to "myPassword123"
(match)
bcrypt.compare('myPassword123', hash).then((result) => {
 // result === true
});

// Pull the password "hash" value from the DB and compare it to "myPasswordABC"
(does not match)
bcrypt.compare('myPasswordABC', hash).then((result) => {
 // result === false
});

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Cryptographic_hash_function

On this page

Secure HTTP Headers

When attempting to secure our websites / apps, we have seen how to implement important features such as

"HTTPS" and "Password Encryption". However, there are other attacks such as "Cross-Site Scripting (XSS)",

"Cross-Site Request Forgery (CSRF)", "Clickjacking Attacks", and so on that we must also consider.

Fortunately, we can set a number of headers on our HTTP Responses that can help mitigate these issues,

for example:

Content Security Policy: This header can be used to control what resources the user agent is allowed

to load for that page. For example, a page that uploads and displays images could allow images from

anywhere, but restrict a form action to a specific endpoint. A properly designed Content Security Policy

helps protect a page against a cross-site scripting attack.

X-Frame-Options: Tells the browser whether the website can be embedded in a frame or iframe. By

setting the X-Frame-Options header to "DENY" or "SAMEORIGIN," we prevent the web application from

being embedded in a frame from another domain, effectively mitigating clickjacking attacks.

X-Permitted-Cross-Domain-Policies: This header is used to limit which data external resources, such

as PDF documents, can access on the domain. Failure to set the X-Permitted- Cross-Domain-Policies

header to “none” value allows other domains to embed the application’s data in their content.

and so on - see https://owasp.org/www-project-secure-headers for more information.

Introducing Helmet.js

To help us work with these secure headers, we can use an NPM module called "helmet.js". Helmet.js

functions as middleware in our Node / Express.js applications that automatically sets or removes certain

response headers in an effort to enhance security.

To get started using helmet, we must install it from NPM and require it in our server.js code:

npm install helmet

const helmet = require('helmet');

http://localhost:3000/Security-Considerations/https-introduction
http://localhost:3000/Security-Considerations/password-encryption
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/Clickjacking
https://owasp.org/www-project-secure-headers/
https://helmetjs.github.io/
https://www.npmjs.com/package/helmet

Once it is required, we can use the default configuration by simply invoking it an "app.use()" to register it as

middleware, ie:

If you test an express server (ie: our "simple web server") with this configuration, you should see a similar set

of headers have been automatically added to the response:

Response

Header
Value

Content-

Security-

Policy

default-src 'self';base-uri 'self';font-src 'self' https: data:;form-action 'self';frame-ancestors

'self';img-src 'self' data:;object-src 'none';script-src 'self';script-src-attr 'none';style-src 'self'

https: 'unsafe-inline';upgrade-insecure-requests

Cross-

Origin-

Opener-

Policy

same-origin

Cross-

Origin-

Resource-

Policy

same-origin

Origin-

Agent-

Cluster

?1

Referrer-

Policy
no-referrer

X-Content-

Type-

Options

nosniff

app.use(helmet());

http://localhost:3000/Web-Server-Introduction/simple-web-server-using-expressjs

Response

Header
Value

X-Dns-

Prefetch-

Control

off

X-

Download-

Options

noopen

X-Frame-

Options
SAMEORIGIN

X-

Permitted-

Cross-

Domain-

Policies

none

X-Xss-

Protection
0

Additionally, the X-Powered-By header has also been removed.

For configuration options, see the "official Helmet.js documentation"

https://helmetjs.github.io/

Example Code

You may download the sample code for this topic here:

Security-Considerations

https://github.com/WPTF-Examples/Security-Considerations

On this page

Getting Started with Vercel

The main server environment that we will be using in this course is Vercel

"Vercel is a platform for developers that provides the tools, workflows, and infrastructure you need to

build and deploy your web apps faster, without the need for additional configuration.

Vercel supports popular frontend frameworks out-of-the-box, and its scalable, secure infrastructure is

globally distributed to serve content from data centers near your users for optimal speeds."

https://vercel.com/docs/getting-started-with-vercel.

Essentially, Vercel manages the hardware infrastructure and deployment tasks for our node.js applications in

a remote environment. Apps deployed using Vercel are hosted on Vercel's infrastructure, which utilizes AWS

services such as AWS Lambda, S3, CloudFront, and DynamoDB, among others

To get started, developers push their code to GitHub and Vercel does the rest. Additionally, Vercel provides a

range of projects as "templates". These can be used to get started quickly or can be used as reference

implementations to see how a particular framework can be deployed effectively.

The best thing - getting started is free! - This is where we come in:

Required Software

By now, you should have Node.js (available here) and Visual Studio Code (available here). However

we will also need git

To download git, proceed to this download page and download git for your operating system.

https://vercel.com/
https://vercel.com/docs/frameworks
https://vercel.com/docs/getting-started-with-vercel
https://vercel.com/templates
https://nodejs.dev/en/download/
https://code.visualstudio.com/download
https://git-scm.com/downloads

Proceed to install git with the default settings. Once this is complete, you can verify that it is installed

correctly by opening a command prompt / terminal and issuing the command git --version. This should

output something like: git version 2.37.2 (...). If it does not output the installed version of git, then

something is wrong and it is not installed correctly.

Lastly, for Vercel to gain access to our code, we must eventually place it on GitHub. Therefore, you must

also have account on GitHub before proceeding.

Configuring your App for Vercel

Before we can start working with Vercel, we must make a few key changes to our code to ensure that it can

be successfully deployed on Vercel. These include:

Adding a "vercel.json" file.

For our applications (defined in a "server.js" file), we must add the following "vercel.json" file to the root of

our project:

Setting the "views" Application Setting

If you are using a template engine in your application (ie: EJS), then you will need to add the line:

{
 "version": 2,
 "builds": [
 {
 "src": "server.js",
 "use": "@vercel/node",
 "config": { "includeFiles": ["dist/**"] }
 }
],
 "routes": [
 {
 "src": "/(.*)",
 "dest": "server.js"
 }
]
}

https://github.com/
https://github.com/

before your route definitions.

Updating your "express.static()" Middleware

Similarly, if you are using the "express.static()" middleware to define a "public" folder, you must also include

the "__dirname" in your path, ie:

Explicitly Requiring the "pg" Module

If you are using Sequelize with the "pg" / "pg-hstore" modules, Vercel will give you an error if you do not

explicitly require the "pg" module, ie:

Committing Your Code

Once you have configured your code for Vercel and you are ready to publish it, the next steps are to initialize

a Git repository at the root of your project folder and push your code to GitHub:

1. First, issue the following command from the integrated terminal at the "root" folder of your project: git

init - this will initialize a local git repository in your helloworld folder.

2. Next, create a file called .gitignore containing the text:

This will ensure that the node_modules folder does not get included in your local git repository

3. Finally, click the "Source Control" icon in the left bar (it should have a blue dot next to it) and type

"initial commit" for the message in the "Message" box. Once this is done, click the checkmark above

app.set('views', __dirname + '/views');

app.use(express.static(__dirname + '/public'));

require('pg'); // explicitly require the "pg" module
const Sequelize = require('sequelize');

node_modules

the message box to commit your changes.

NOTE: If, at this point, you receive the error: "Git: Failed to execute git", try executing the following

commands in the integrated terminal:

Once this is complete, attempt to click the checkmark again to commit your changes.

Create a GitHub Repository

For Vercel to gain access to our code, we must place it on GitHub. Therefore, the next step in this process is

creating a GitHub repository for your code:

1. Sign in to your GitHub account.

2. Find and click a "+" button on the Navigation Bar. Then, choose "New Repository" from the dropdown

menu.

3. Fill in the repository name text field with the name of your project. Also, please make sure that the

"Private" option is selected:

4. Once you're happy with the settings, hit the "Create repository" button.

Connect the Local Git Repository to GitHub

Now that our GitHub repository is created, we can proceed to update it with our local copy:

1. First, go to your newly-created GitHub repository and click the "copy" button in the "Quick Setup" block:

This will copy the URL of your remote GitHub repository.

2. Next, go back to your Terminal again and add this remote URL by running the following command:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

where URL is the remote repository URL that you have copied in the previous step.

3. To confirm that "origin" was added correctly, run the command: git remote -v . You should see

something like this:

4. Finally, you can push the code from your local repository to the remote one using the command:

Important Note: If at this point, you see the error: "src refspec master does not match any" then

"master" is not set as your default branch. Execute the command git status to determine which

branch you're on (it may be "main") and push that instead, ie: git push origin main , for

example

You can verify that the code was pushed by going back to your Browser and opening your GitHub repository.

Connect the GitHub Repository to Vercel

You should now be ready to push your code to Vercel. First, browse to https://vercel.com and hit the "Start

Deploying" button.

1. Next, press the "Continue with GitHub" button, since our code is located on GitHub.

2. If you are not currently logged in to GitHub, you will need to provide your credentials in a pop-up window

before continuing.

3. Once you have logged in to GitHub, you will be taken to the Let's build something new. screen in

Vercel, which prompts you to "Import Git Repository". From here, you will need to click "+ Add GitHub

Account"

4. This will prompt you to "Install Vercel". Feel free to install it for "All repositories"

5. You should now see your repository available for import. To proceed, click Import

git remote add origin URL

origin git@github.com:patrick-crawford/helloworld.git (fetch)
origin git@github.com:patrick-crawford/helloworld.git (push)

git push origin master

https://vercel.com/

6. At the next page, you are not required to make any changes, as Vercel should detect that we are using

Node.js. If you had any environment variables, you could set them here as well. Once you are done,

click Deploy.

7. Once the deploy step has completed, you should be taken to a "Congratulations!" page with a black

button labeled Go To Dashboard. Click this to see the information about your deployment.

Make Changes and Push to GitHub

Finally, our code is linked to Vercel via. GitHub!

You should now be able to make any changes you wish and trigger a redeploy of your server on Vercel by

simply making changes locally, checking in your code using git and "pushing" it to GitHub, using the above

instructions.

Good luck and Happy Coding!

Alternative (Render)

Render, like Vercel, also has a free tier that is available without a credit card or separate account (you can

use GitHub to sign in):

"It’s easy to deploy a Web Service on Render. Link your GitHub or GitLab repository and click Create

Web Service. Render automatically builds and deploys your service every time you push to your

repository. Our platform has native support for Node.js, Python, Ruby, Elixir, Go, and Rust. If these don’t

work for you, we can also build and deploy anything with a Dockerfile."

https://render.com/docs/web-services.

Unfortunately, the main drawback of using the free services of Render is that our deployments (web

services) are spun down after 15 minutes of inactivity. This will cause a significant delay in the response of

the first request after a period of inactivity while the instance spins up.

For more information see the official documentation on "Free Web Services".

To get started using Render, click the "GET STARTED FOR FREE" button on their main site. This will take

you to a login page where you can use your GitHub account for authentication.

Once logged in, click the blue "New +" button in the top menu bar and choose "Web Service". This will

take you to a page where you can choose your GitHub repository for deployment. If you do not see your

https://render.com/
https://render.com/docs/web-services
https://render.com/docs/free#free-web-services
https://render.com/

repository in the "Connect a repository" section, Click "Configure account" under the "GitHub" heading in the

right sidebar. This will allow us to grant "Render" permission to all of our repositories (essentially performing

the same task that was necessary for Vercel to access our repositories).

Once this is complete and you can see your repository in the list, click the corresponding "Connect" button.

You will then be taken to a screen where you must provide:

A unique name for your web service

A "start" command (this will typically be "node server.js", ie: the same "start" command that you will

find in your package.json file)

Finally, ensure that the "Free" instance type is checked and click "Create Web Service" and wait for your

code to build and deploy.

